IMPERIAL COLLEGE LONDON

Bootstrapping and its Applications to Credit Scoring

Author Supervisor
Luke KANCZES Dr. Tony BELLOTTI

This is entirely my own work unless otherwise stated.

June 12, 2012

Abstract

The bootstrap method provides a way to measure the accuracy of a sample statistic. For example, it
allows us to estimate the variance of a particular statistic such as the mean. The specific aim of this paper
is to demonstrate some ways in which bootstrapping can be applied to credit scoring. We present the
bootstrap method as a way to compute confidence intervals on the difference between score cards, citing
this as an alternative to the Mann-Whitney U Statistic. We also demonstrate how it might be useful in
the case of a limited data set, before considering default rates within a homogeneous population. We
compare block bootstrapping methods with bootstrapping residuals within the context of a first-order
autoregressive model and show how we might bootstrap the Kaplan Meier estimate and compare the
standard error result with that obtained by using Greenwood’s formula.

Acknowledgments

I would like to thank Dr Tony Bellotti for his help over the course of the year. This project would not
have been possible without his fantastic help and guidance. T would also like to thank Abbas Asaria and
Neil Watt for their help with proof-reading. Finally, I would like to thank the credit card company which
provided the data set.

Contents

1 Introduction

1.1 Background Explanationo o
1.2 Building ascore card L L e e e
1.2.1 Assessing the quality of a scorecard L oo L.
1.3 Comparing score cards e e e
1.4 Time dependent data L
2 Bootstrapping
2.1 Introduction oL e
2.2 Non-parametric Bootstrap Lo e
2.2.1 Non-parametric bootstrap algorithm
2.2.2 Example. e e e e e e e e
223 Howlargetomake B o
2.3 Bootstrapping Confidence Intervals o oo
2.3.1 Imtroduction L
2.3.2 Student’s tintervalo
2.3.3 The bootstrap-t interval L oL
2.3.4 Percentile bootstrap confidence intervals oL
2.4 Non-bootstrap methods e e e e e
3 Bootstrapping a Credit Scorecard
3.1 Building a basic Credit Scorecard oo
3.1.1 Preparingthedata o
3.1.2 Building the Logistic Regression Model
3.2 Bootstrapping AUC e
3.2.1 Gaussian Normal interval o oo L
3.2.2 Student’s tinterval Lo
3.2.3 The bootstrap-t interval L o
3.2.4 Percentile bootstrap confidence intervals
3.2.5 Comparison
3.3 Number of bootsamples
3.4 Limited dataset e e
3.4.1 Cross-validation oL e e
3.4.2 Bootstrappingo e e e e
3.4.2.1 Application of the bootstrap,
4 Comparing Models
4.1 Hypothesis testing L
4.2 Mann-Whitney Test L
4.3 Bootstrapping the difference in AUCs Lo
4.3.1 Two Sample Bootstrap L
4.3.2 Proposed Methodology L
4.3.3 Algorithm for testing distributional forms,
4.3.4 Algorithm for testing equality of means,
4.3.5 Rational L

CONTENTS 5

4.3.6 Example. e 27

4.4 Bootstrap the difference in AUC Lo 28
4.4.1 Difference between models is potentially insignificant 28
4.4.1.1 Difference between models is significant 29

5 Homogeneous Time Dependent Data 30
5.1 Introduction L L 30
5.2 Autoregressive model theory oL 31
5.3 First order autoregressive model simulation o0 00 31
5.3.1 Bootstrapping residuals L Lo L 32
5.3.2 Block bootstrappingo 33
5.3.2.1 Moving blocko 34

5.3.2.2 Non-overlapping L 34

5.3.2.3 Circular 34

5.3.2.4 Stationaryo e e 34

5.3.2.5 Implementing the block bootstrap algorithm 34

5.4 Default Rates autoregressive model L oo oo 36
5.5 Survival Analysis 38
5.5.1 Kaplan-Meier Estimate 38
5.5.2 Bootstrapping the Kaplan-Meier estimate 39

6 Conclusion 41
6.1 Overview e e 41
6.2 Discussion e e e e 42
6.3 Further Work e 42
7 Appendix 43
7.1 One Sample Bootstrap algorithm L o 43
7.2 Building a basic credit score card L Lo 43
7.3 Bootstrapping Confidence Intervals L. L. 44
7.4 Number of Bootsamples L 45
7.5 Limited dataset L 46
7.6 Hypothesis test - distributional form oo 0oL 46
7.7 Hypothesis test - significant differenceo o 0oL 47
7.8 Hypothesis test - insignificant difference oo 00000 47
7.9 Generating an AR(1) model 48
7.10 Bootstrapping residuals 48
7.11 Moving block bootstrap e 49
7.12 Non-overlapping block bootstrap o 50
7.13 Circular block bootstrap« . . e 51
7.14 Stationary block bootstrap L 51
7.15 Greenwood’s formula 52
7.16 Bootstrapping the Kaplan Meier Curve 53

8 References 55

Chapter 1

Introduction

1.1 Background Explanation

“Statistics is the science of learning from experience, especially experience that arrives a little bit at a
time” [1, p.1]. The term bootstrap derives from the phrase “to pull oneself up by one’s bootstrap” from
the Adventures of Baron Munchausen by Rudolf Erich Raspe, “The Baron had fallen to the bottom of
a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps”
[1, p.5]. When you pull yourself up by your own bootstraps, you succeed on your own, despite limited
resources [2, p.709].

Bootstrapping is a computer-based method for assigning an accuracy measure to statistical estimates
[1, p.10]. They allow us to estimate sampling distributions and their characteristics, in particular, it
enables us to estimate the variance of a statistic and therefore allows us to construct confidence intervals
and hypothesis tests. We often apply them when the distribution of the population is unknown or when
we have limited data sampled from said population.

Credit scoring provides a systematic means by which banks and other financial institutions gather
information about borrowers or applicants for loans regarding their creditworthiness. In credit scoring
we normally deal with large data sets, with a relatively small number of defaults, taken from an unknown
distribution.

Much work has been done on building consumer credit score cards. However, little work has been
done on how to apply the bootstrap algorithm in the context of credit scoring with the particular aim of
comparing score cards. Further, what has not been researched in any particular scope, is whether it is
possible to apply time dependent block bootstrapping techniques to model consumer credit default rates.

We shall begin by introducing the methods used to build credit score cards and how we might de-
termine the performance of a particular score card. We demonstrate how bootstrapping can be used
when a data set is of a limited size and then describe how we might apply the bootstrap methodology to
place confidence intervals on the relative difference between score cards. Finally we consider time indexed
data and demonstrate how macroeconomic pressures are likely to have an effect on the relative credit
worthiness of an individual, before critically analysing time dependent, block bootstrapping techniques
and elements of survival analysis.

1.2 Building a score card

Logistic regression is the most commonly used method for building scorecards [7, p.79]. Throughout this
paper we shall suppose we have an overall data set of N points. We suppose our data set is of the form
(q’,r?) for i = 1,2,..., N, where q* = (¢¢, G5, ..., q%,) are the characteristics of each borrower (e.g. income,

age etc.) and
i 1 if good
~ |0 ifbad

Here, good corresponds to a borrower who does not default and bad corresponds to a borrower who
defaults. This is divided into two independent data sets, which we refer to as training and test. For

CHAPTER 1. INTRODUCTION 7

the purposes of our introductory explanation we suppose the method used to divide these data sets is of

limited importance. We build our model on the training data set and assess its effectiveness using the

test data set. If we suppose our training data set is of size [and our test data set is of size n, then N is

such that N = [+ n. Without loss of generality, the data sets are relabelled such that our training set is

of the form (q’,77) for j = 1,2, ...,1 and our test data set is of the form (q*,r*) for k =1 +1,1+2, ...,1+n.
Dealing just with our training data set, we define Pr{good|data q} = p(G|q) = p(q) and Pr{bad|data q} =

p(Blq), such that p(G|q) + p(B|q) = 1. The log odds score, score(q), is then defined such that [7, p.79]

ot (5538) o 2) -

escore(q) eca
= 1 +escore(q) = 1+ ecq

Maximum likelihood estimation is then used to find estimates ¢ of the parameters ¢, where we define

l J r (1—r)
et 1 o
L(c):};[l <1+e°-qf> (1+ec-qf)

Which is equivalent to maximising

= p(a)

! cq ! ,
log(L(c)) = er log <1iec_qj> + > (1—-179) <]_<|>1€CqJ) (1.1)

Differentiating (1.1) and setting its derivatives equal to 0, implies that maximisation occurs when

Yo - B | I
=1 Ltecd ||
l ol
S (- (o)) =0
= i 1 +€c~q1

These are solved numerically, allowing us to generate a general linear model. For subsequent chapters
we shall denote our test data set as X = (21, ..., z,,) where x; corresponds to (q'*?, ri*?).

and fori=1,....m

1.2.1 Assessing the quality of a scorecard

Having built a scorecard we might now wish to assess its quality. The most widely used discrimination
measures are generated from the Receiver Operating Characteristic (ROC) curve [7, p.101]. The ROC
curve originated from estimating the errors in transmitting and receiving messages, however can be applied
in the context of credit scoring. A cut-off value ¢, provides a simple decision rule to classify people as
potential defaulters and potential non-defaulters. Any individual with a credit score lower than ¢ are
treated as defaulters (bad) while all individuals with a score higher than c are treated as non-defaulters
(good) [8, p.146]. Under this decision rule, four scenarios can occur, which are summarised in Table 1.1.
We refer to this as a Confusion Matrix.

Actual non-default | Actual default
Predicted non-default Specificity Type II error
Predicted default Type I error Sensitivity

Table 1.1: Confusion Matrix

The ROC curve shows the trade-off between the true positive rate and the true negative rate. More,
precisely it is a plot of the sensitivity, defined as F(s|G) = Pr{score < s|G}, versus 1-specificity, defined
as F(s|B) = Pr{score < s|B} over all possible values of s [6, p745].

CHAPTER 1. INTRODUCTION 8

ROC Curve

Improved Scorecard e
— (iy1)

4

10

08

086

Original Scorecard
— i)

F1 True positive rate
04

02

0.0

T T T T T T
0.0 02 04 06 08 1.0

FO False positive rate

Figure 1.1: ROC Curves for two different score cards

A score card with perfect discrimination would be such that all the bad individuals have scores less
than ¢ and all the good individuals have scores above c. In this case F(¢|G) = 0 and F(¢|B) =1 and our
curve would consist of a vertical line from (0,0) to (0,1) and a horizontal line from (0,1) to (1,1). By
comparison a score card with no discriminatory power would be such that F(c|G) = F(c|B) and would
consist of a diagonal line from (0,0) to (1,1).

Intuitively therefore, the closer the curve is to the point (0,1), the better the discriminatory power of
the scorecard. We formalise this intuition by considering the area under the ROC curve, (referred to as
AUROC or AUC), where the larger this value the “better” the discrimination is.

Mathematically, we define AUC as [7, p.117]

AUC = / F(s|B)dF(5G) = / F(s|B)f(s|G)ds

Since AUC takes values between !/2 and 1, we could instead use the Gini coefficient as a measure
of the discrimination, where we define Gini = 2 - AUC — 1. The Gini coefficient therefore takes values
between 0 and 1, where 0 corresponds to a model which is no better than random and 1 corresponds to
a model which has perfect discriminatory power [7, p.117].

However, we should note that lenders are normally anxious to accept a large number of people for
credit and therefore cut-off scores are normally taken from the lower end of the graph [7, p.125]. As a
result there is a case to be made that the AUC places too much emphasis on larger scores than might be
considered optimal. In spite of this, AUC remains the most widely used measure of the discrimination of
a score card, and thus will form the basis of our study.

1.3 Comparing score cards

In Figure 1.1 we can see two different ROC curves. The left uppermost curve has a higher true positive
rate for all cut-off values c¢. Therefore, we might conclude that this score card is better than the original
score card. However, to fully justify rejecting one score card in favour of another we may wish to
place confidence intervals on the AUCs generated for each score card. Conventional techniques to place
confidence internals on a statistic require us to calculate the standard error. However, there exists no
closed explicit method to estimate the standard error for the performance of a general linear model. It
is with the aim of comparing the performance of score cards that we study the bootstrap methodology.

CHAPTER 1. INTRODUCTION 9

1.4 Time dependent data

Having explored how bootstrap methods can be used to directly compare score cards, we then wish to add
an extra dimension to our analysis by considering time dependent data. It might be considered intuitively
obvious that consumer credit data has a time dependent element. During a recession, macroeconomic
pressures mean that it is likely that default rates are higher than during a high growth period.

A consumer credit card data set, consisting of 4635 individuals, will form the basis of our research.
This data set is time indexed. If we consider the month the account was opened as a time stamp, where
month one corresponds to January 2008, we can see in Figure 1.2 that there were low default rates for
accounts opened in the earlier months, with spikes in the default rate for accounts that were opened
around month fifteen, corresponding to April 2009.

Default percentage per opening month

D.”U
20 25

15

10

T T T T T
5 10 15 20 25

Relative month the account was opened

Figure 1.2: Relative number of defaults per month

We shall consider whether it is possible to fit a first order autoregressive model to default rates before
critically analysing some of the methods we can use to apply bootstrapping to assess the accuracy of
such a method. Underpinning such theory is the assumption that individuals within the population are
homogeneous. However, we know this is not the case. Different groups of people are likely to have
different associated default rates, which forms the basis of the credit scoring methodology. In spite of this
we will consider the assumption of a homogeneous population. We are also faced with the problem of
accounts being closed prematurely. This is known as right-censoring. Subsequently elements of survival
analysis will be considered to deal with the specific issue of right-censored data.

Chapter 2

Bootstrapping

2.1 Introduction

When discussing the concept of bootstrapping, it is important to distinguish between the parametric
and non-parametric bootstrap. For the parametric bootstrap, we make some assumptions about the
distributional form. By comparison, for the non-parametric bootstrap estimate we make no distributional
assumptions and instead employ the empirical distribution. This has the advantage of allowing us to
obtain standard errors, however complicated the estimator. The non-parametric bootstrap methodology
will therefore form the basis of our research.

2.2 Non-parametric Bootstrap

We begin by considering a simple problem. Suppose we have a random sample x = (21,2, ...z,) from
some unknown probability distribution F' and we wish to estimate a parameter of interest 6 on the basis of
x. For this purpose we calculate an estimate 6 = s(x) from x, where s(-) denotes our statistic of interest.
For example, if we suppose 6 is the mean then we take s(x) as the sample mean . We now ask the
question, how accurate is our estimate 0?7 The non-parametric bootstrap provides a method to estimate
the standard error of 6 without making any prior theoretical assumptions. We denote the standard error
of 6 as sep(f) [1, p.40).
If we denote F' as the empirical distribution defined as [4, p.1]

Ft) =

- number of elements in the sample <t 1 «
— = — I(x; <t
n n ; (xl -)

A bootstrap sample is then defined to be a random sample of size n drawn from . This is denoted
as x* = (z7,...,z}). Each bootstrap sample is equivalent to drawing with replacement a random sample
of size n from the population of n data points (z1, ...,).

Correspondingly we find the bootstrap replication of 0 as

0" = s(x*)

where the quantity s(x*) is the result of applying the same function s(-) to x* as was applied to x. The
bootstrap estimate of seF(é), is a plug-in estimate that uses the empirical distribution function F' in
place of the unknown distribution F. We therefore estimate sex () using se F(é*), which we refer to as
the ideal bootstrap estimate. This process is repeated a large number of times to provide a good numerical
approximation of the value of se F(é*) A diagrammatic demonstration of the method is given in Figure

2.1.

2.2.1 Non-parametric bootstrap algorithm

The above is an outline of what is referred to as the One-Sample Problem. Our random sample x is
drawn from one unknown probability distribution F. We will later consider the Two-Sample problem

10

CHAPTER 2. BOOTSTRAPPING 11

Bootstrap World

7 s g oy
F o : : - 3A€B‘< =T)
Y A
xg = (21, ...23,) — 07(B)=s(x7)
i
Real World

F - x=(z1,..,2,) — 0=35(x)

Figure 2.1: Visualisation of the bootstrap process for estimating the standard error of a statistic s(x).

which deals with two mutually independent random samples drawn from two probability distributions.
We summarise the above with the following algorithm:

1. Select B independent bootstrap samples X7, X3, ..., X, each consisting of n data points drawn with
replacement from the observed data set x = (x1, ..., z,,).

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

0*(b) = s(xg) forb=1,2,...,B

)

3. Estimate the standard error sep(6) by the sample standard deviation of the B replications
B O % 2\ 2
S {070 - 07()}

5B = B—1

where §*(-) = = S0, 6%(b)
We can see that limp_. sep = sep = sep(é*). This is equivalent to noting that as B — oo the empirical
standard deviation approaches the population standard deviation.

2.2.2 Example

Having described the algorithm that allows us to implement the non-parametric bootstrap, we shall now
demonstrate the power of this technique. In Table 2.1 we have credit scores for 25 individuals. If we
suppose that the population distribution is unknown, we can estimate the standard error of the mean of
these scores using the bootstrap algorithm and compare this to theoretical result.

0.75311889 0.90697848 0.79900132 -0.81674408 0.70691348
-0.66770845 -0.04024196 0.85663310 0.70299466 1.38542186
0.72114495 -0.60780066 0.29926675 -1.20001968 0.51914446
-0.46625055 1.31689987 -0.99389013 0.20462409 -1.57084974
-1.22438156 1.62587981 -0.40231527 1.15071131 -0.35977559

Table 2.1: Credit scores for the 25 individuals

The sample mean of this data is given as 0.1439502. For 200 bootsamples the standard error is
estimated as 0.1753753. [Appendix 7.1]

CHAPTER 2. BOOTSTRAPPING 12

Histogram of bootreplications

o _
=]
g
)
Q
C
@
> o |
o 9™
@
(1R
o |
=)
I
o

I T T T 1
-0.2 0.0 0.2 04 06

bootreplications

Figure 2.2: Histogram of the 200 bootstrap replications of the mean credit score

We can also estimate the standard error by applying the central limit theorem. If we have data points
X1, ..., X,, independently identically distributed, then

noi Xi—p _ X —p
a/vn a/vn

Hence X — N(u, %2) and therefore, we can estimate the standard error of the sample mean as N

— N(0,1) asn — oo

In actual fact the 25 data points were sampled from a N(0,1) distribution and therefore we can
calculate the standard error as \/% = 0.2. We can see that our bootstrap estimate of the standard error
is close to the theoretical value, yet was calculated without having to make any theoretical assumptions.
This is particularly useful in the context of credit scoring, where we cannot guarantee that individuals

within a given data set are independently identically distributed.

2.2.3 How large to make B

In the above algorithm the number of bootsamples is defined as B. The ideal bootstrap estimate seq,
takes B = oo, in which case se,, equals the plug-in estimate sep(é*). However, for most practical
purposes, excluding the calculation of confidence intervals, a value of B = 200 will suffice. For the
specific case of calculating confidence intervals Efron [1, p.52] recommends a value of B = 1000 or more.
This is important to ensure that the bootstrap replications approximately take the expected distributional
form, which is especially important when calculating confidence intervals using the percentile confidence
interval method. We shall explore this in more detail in the following Section.

2.3 Bootstrapping Confidence Intervals

We now turn our attention to the problem of bootstrapping confidence intervals. This shall form the
basis of our study, in particular when comparing credit score cards. We start by considering how we
might place confidence intervals on one isolated statistic.

2.3.1 Introduction

Suppose we are in the one-sample situation where the data x is obtained by random sampling from some
unknown distribution F. Let 6 be our estimate of some statistic of interest 6 and let se be our estimate
of the standard error for . Under the central limit theorem 6 ~ N (6, se?) or equivalently

090
 de

A ~ N(0,1) (2.1)

CHAPTER 2. BOOTSTRAPPING 13

Therefore, as n — oo if we let 2(®) indicate the 100 - ath percentile point of a N(0,1) distribution,
confidence intervals for 6 are obtained as [1, p.158]

6—20"%ge 6 — z(“)sAe}

Alternatively we can write our confidence intervals as 0+ 2= . ge.
The above methodology, however, is only valid as n — co. More generally, for finite samples, we use
the Student’s t distribution [1, p.158].

2.3.2 Student’s t interval

Here we say that for a sample of size n

6—0

se

Z = ~tn-1

where t,,_; denotes the student’s t distribution with n — 1 degrees of freedom. If we let tgfi)l indicate the
100 - ath percentile point of ¢,,_; then using this approximation confidence intervals are obtained as

60— ts:la) - Se, 0 + tfla)l - se

We can demonstrate how we might bootstrap confidence intervals using the student’s t method as
follows. If we take the 25 data points generated from a N(0,1), as in our one-sample problem in Section
2.2.2, our mean is given as 6 = 0.1439502 with standard error se = 0.1753753. Using the Student’s
t distribution with n — 1 = 24 degree’s of freedom, 95% confidence intervals are given as 0.1439502 +
2.059539-0.1753753 = [—0.2172421,0.5051425]. As might have been expected, our 95% confidence interval
includes the value 0.

We now aim to remove the normal theory assumptions as made in (2.1). The following method
estimates the distribution of Z directly from the data, which is then used to construct confidence intervals.

2.3.3 The bootstrap-t interval

The method proceeds as follows [1, p.160]. Generate B bootstrap samples x7, ..., x5 and for each compute

7w =0 L

where 6*(b) = s(x3) is the value of 6 for the bootstrap sample x;, and se”(b) is the estimated standard
error of §* for the bootstrap sample x;,. For the specific case of § equal to the mean, use the plug-in

estimate .
* —xb\2) 2
SAE*(b) _ { Z?:l (xib -z b) }

n2
The ath percentile of Z*(b) is estimated by the value £(*) such that

#{Z"(b) <t}
5 =«

For example, when B = 5000, an estimate of the 5% point is the 250th largest value of Z*(b)’s and
an estimate of the 95% point is the 4750th largest value of the Z*(b)’s. If B - « is not an integer then
calculate k = ceiling(a - (B + 1)) and take the k' largest and the (B + 1 — k)" largest values of Z*(b).
The bootstrap confidence intervals are then given as

6 —{1-2). se, G sAe}

Efron and Tibshirani [1, p.161] demonstrate that in large samples the convergence of the bootstrap-t
interval tends to be closer to the desired level than the convergence using either the student’s t or standard

CHAPTER 2. BOOTSTRAPPING 14

normal. However, this gain in accuracy comes at the price of generality. Standard normal tables can
be applied to all sample sizes, the student’s t distribution applies to all samples of fixed size n, however
the bootstrap-t methodology applies only to the given sample. Hence a large value of B is especially
important.

There are further problems with bootstrap-t confidence intervals. In the above example we have an
explicit formula for our standard error. However, if we do not have an explicit formula for our standard
error then Efron [1, p.162] explains that we are required to create a bootstrap estimate for each bootstrap
sample. This implies we require two levels of bootstrap sampling, which would require an even larger
number of iterations. This is particularly important in our case, where there exists no standard method
to estimate the standard error for a particular score cards AUC.

2.3.4 Percentile bootstrap confidence intervals

If we consider the histogram of our bootstrap samples as in Figure 2.2 we can see it is roughly normal
in shape. Therefore, it is possible for us to use percentiles from the bootstrap histogram to define our
confidence intervals.

Suppose that we generate our bootstrap data set x* and the bootstrap replications o* = s(x*) are
computed. Now let G be the cumulative distribution function of 6*. The 1 — 2a percentile interval as
B — oo is then defined as

GYa), G711 - a)]

For a finite number of bootsamples we generate B independent bootstrap data sets xj,x3, ..., x5 and
compute the bootstrap replications é*(b) = s(x}) for b =1,..., B. Ordering these bootstrap replications,
we then define ég(a) to be the 100 - ath empirical percentile of the 9*(()) values. Similarly, define é*B(l_a)
to be the 100 - (1 — «)th empirical percentile. The 1 — 2a percentile interval is then defined as

[g*B(a)’ é*B(lfoc)

If the bootstrap distribution is roughly normal then the percentile confidence intervals and the stan-
dard normal confidence intervals will nearly agree. From the central limit theorem, as n — oo the
bootstrap histogram will become normal shaped, however for smaller n this might not always be the
case. In the context of credit scoring data, we normally deal with large data sets and using modern day
computers can use a large value for B without significant time constraint and therefore we might be led to
believe we are no better favouring either technique over the other. In actual fact, the percentile method
is our preferred choice. We shall demonstrate why as follows.

If we were to consider the case of a statistic @ such that it has undergone a transformation ¢ = m(é)
where quS ~ N(¢,c?), for some value ¢, then confidence intervals on 0 equals

m (3 — 20-)e),m 1 (§ — 2()c)]

Percentile confidence intervals adjust for said transformation, however, if we were to naively apply stan-
dard confidence interval techniques they do not automatically adjust for the transformation and therefore
we would yield unreliable confidence intervals [1, p.175]. The above invariance to transformations makes
the percentile bootstrap method arguably the most attractive.

2.4 Non-bootstrap methods

A different method used to compute confidence intervals is using the properties of the Mann-Whitney
statistic. It has been shown that the area under an empirical ROC curve is equal to the Mann-Whitney
two-sample statistic and therefore can be interpreted as the probability that a randomly drawn positive
case has a lower score than a randomly drawn negative case [10, p.838]. We give a brief overview of our
problem in Chapter 4.

Chapter 3

Bootstrapping a Credit Scorecard

3.1 Building a basic Credit Scorecard

We start by building a basic credit scorecard, which aims to predict whether a person does not default.
Our data set consists of 4635 credit card accounts. This has been indexed in time, which means we know
when a particular account was opened and if applicable, when an individual defaulted. This potentially
adds an interesting extra dimension to our analysis. However, for simplicity, we’ll start by assuming the
data points are independent of time.

3.1.1 Preparing the data

The data has several variables which could potentially be used to build our score card. These are given
in Table 4.1. It is important to note that our definition of default is three missed payments within 12
months of opening the account.

Statement Year
Statement Month
Statement Relative Month

Year of default occurring
Month of default occurring
Months from January 2008 to date of default

Variable Description Values

1D Applicant/account id to be used for data matching Integer

Age Age of applicant at time of application Integer
Employment Status Employment status at time of application Jategories
Tenure Home ownership status at time of application Categories

Months at Address Total months at current address at time of application Integer
Application Channel Channel which the application was made Categories

Open Year Year of account opening 1008 to 2011
Open Month Month of account opening 1 to 12
Open Relative Month Months from January 2008 to date of account opening 5 to 41

Default Did the account default {3 months down) within 12 months of opening? True/False
Statement Number Statement number at time of default 4 to 37

2008 to 2011
1 to 12
8 to 41

Table 3.1: Data Variables.

Here our categories for Employment Status are: EM - Employed, HO -

Homemaker, RE - Retired, SE - Self-Employed, ST - Student; for Tenure: CT - Council Tenant, HO -
Homeowner, LP - Living with Parents, PT - Private Tenant and for Application Channel: Cold Call,
Internet, Mail, Other.

We start by considering some basic transformation of variables. For the categories, we create indicator
variables for each of the possible values. Further, we shall divide Age and Months at Address into
quintiles. It is also important to consider outliers. An outlier is an extreme value which is therefore
considered highly unlikely; however we must proceed with caution since determining an outlier depends
on the underlying distribution. We shall consider as potential outliers any value which is greater than
1.5 - Interquartile Range above or below the upper and lower quartile. An extreme outlier is taken as

15

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 16

more than 3 - Interquartile Range above or below the upper and lower quartile. For Months at Address
we find there are 8 records which could be described as extreme outliers. With the aim of building a
robust model, we shall discard these records. We also note there are 147 records with Tenure blank. We
shall add an indicator variable for these records.

3.1.2 Building the Logistic Regression Model

After doing this we build a scorecard using logistic regression, modeling whether people are “good”. The
scorecard is used to compute the predicted probabilities of being a good payer on the test data set.
Finally the Receiver Operating Characteristic (ROC) curve is plotted. We assume the data points are
independent of time and thus assume the method used to divide the data into test and training data
sets is statistically insignificant. Therefore, for simplicity random sampling, without replacement, shall
be used to divide our data sets. We shall divide test:training into the ratio 1:3.

Our general linear model is built using the following variables: Age divided into quintiles, Months at
Address divided into quintiles, Tenure as category variables, Employment Status as category variables
and Application Channel as category variables. A summary for our model is given in Table 4.2.

Estimate Standard Error z value p value Significance

(Intercept) 2.61344 1.07269 2.436 0.01484 *
agel -0.40073 0.16478 -2.432 0.01502 *
age2 -0.09380 0.16245 -0.577 0.56367

age3 -0.10854 0.24212 -0.448 0.65395

age4 -0.01420 0.17325 -0.082 0.93470
MONTHS_AT_ADDRESS1 -0.08437 0.15959 -0.529 0.59704
MONTHS_AT_ADDRESS2 -0.45323 0.15213 -2.979 0.00289 *%
MONTHS_AT_ADDRESS3 -0.46458 0.17036 -2.727 0.00639 *k
MONTHS_AT_ADDRESS4 -0.42934 0.19073 -2.251 0.02439 *
TENURE_CT -0.37857 0.17336 -2.184 0.02898 *
TENURE_HO 0.97949 0.15327 6.391 1.65e-10 | *%x*
TENURE_PT -0.09681 0.14744 -0.657 0.51146
EMPLOY_STATUS_EM 0.42133 0.17871 2.358 0.01839 *
EMPLOY_STATUS_HO 0.14514 0.29777 0.487 0.62596
EMPLOY_STATUS_RE 0.45275 0.38633 1.172 0.24123
EMPLOY_STATUS_SE 0.48262 0.23951 2.015 0.04390 *
APPLICATION_CHANNEL_C -1.00227 1.09143 -0.918 0.35846
APPLICATION_CHANNEL_I -1.18398 1.04569 -1.132 0.25753
APPLICATION_CHANNEL_M | -1.48169 1.08007 -1.372 0.17011

Table 3.2: Summary for our General Linear Model, with significance codes for each variable given as: 0
“okk’ 0,001 “*%7 0.01 %7 0.05 “.7 0.1 ° 7 1

We also plot our ROC curve and calculate the models AUC, given as 0.6550542 [Appendix 7.2]. The
bootstrap algorithm is employed with the aim of placing confidence intervals on this estimate.

3.2 Bootstrapping AUC

In Section 2.3 we discussed four different methods to place confidence intervals on a particular models
AUC. We shall first explain how we bootstrap our AUC before explaining how we interpret the algorithms
presented and then compare each method. In all four algorithms, our statistic of interest, 6, is the model’s
AUC and our estimate, é, is given as 0.6550542 as in the previous Section. We shall denote § = AUC
and § = AUC = 0.6550542.

There are two different methods to bootstrap AUC as shown in Figure 3.1. The first method divides
our original data set in two and then generates one model on the training set and bootstraps the test
data set B times to produce B AUCs formed using the same model. The second method produces B
training data sets and B models based on these data sets. These are then tested on the corresponding
test data set to produce B AUCs.

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 17

Method 1
training — Model
S .
Data Set x3 = (z3,...,25) — AUC (1)
pY /
testing — x = (z1, ..., Tp,)
\‘ Ak
xp = (z7,...,2}) = AUC (B)
Method 2 training] — Model 1
e
Data Set}
pY
testing} — x} = (21, ...,a%) — AUC (1)
/
Data Set
hY
trainingg; — Model B
S
Data Set}
p

testingl, — x5 = (27, ...,2}%) — AGC*(B)

Figure 3.1: Two different methods to bootstrap AUC

There is a subtle difference between each method. It’s important to emphasise that the first method
builds just one model based on the borrower characteristics. However, the second builds B different
models based on the same characteristics, which are optimised with respect to each of the B training
data sets.

The first method is widely referred to in the literature as standard. From a business perspective, credit
rating agencies often build just one model, colloquially referred to as the Champion, and wish to measure
this models performance relative to a Challenger. Furthermore, it is clear that the second method,
where we generate B models and a corresponding AUC for each, is computationally more expensive. The
first method will therefore form the basis of our study. We shall now consider how we might bootstrap
confidence intervals for our model [Appendix 7.3].

3.2.1 Gaussian Normal interval
The first method that was described used the central limit theorem. Here we say that as n — oo

g AUC - AUC

se

~ N(0,1) (3.1)

and therefore, if we let zfa) indicate the 100- ath percentile point of a N(0, 1) distribution, our confidence
intervals are given as AUC + 2(1=®) . e. However, this is only valid as n — oo, yet our data set contains
information about 1158 individuals. Using B = 1000 our confidence intervals are given as

e 95% upper confidence interval — 0.694923
e 95% lower confidence interval — 0.6151854

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 18

3.2.2 Student’s t interval

For a sample of size n

AUC — A
g - AvC-Aave

se
Using this approximation confidence intervals are given as

AUC — ts:la) - e, AUC + tioi)l - se
For n = 1158 we therefore obtain our confidence intervals using B = 1000 as
e 95% upper confidence interval = 0.6949647

e 95% lower confidence interval — 0.6151437

In both cases our standard error, se, is estimated using the bootstrap method.
3.2.3 The bootstrap-t interval

The procedure is as follows [1, p.160]. We generate B; bootstrap samples xj, ..., xg_and for each compute

_AUC(b) — AUC
N se*(b)

Z*(b)

where se”(b) is the estimated standard error of AUC” for the bootstrap sample xj,. Since there exists no
closed formula to calculate se*(b), we estimate the standard error using a second bootstrap level. Here
for each bootstrap sample x;, b =1, ..., By, we generate By bootstrap samples Xp 15+ Xp By- The AUC

is then calculated for each AUC” (b,1), ..., AUC’*(b, Bs) and used to calculate the standard error

1
2

A * A * 2
S22 {AUCT (b,i) - ADC" (0,9}
By —1

where AUC” (b,)= 25;21 AUCT;“”U. The ath percentile of Z*(b) is estimated by the value #(*) such that

#{z) <)
By o

@
The bootstrap confidence interval is given as

[AUC — {079 . ge, AUC +{(@) . sAe}
Where we estimate Se using

o . N2\ 3
2 {Avc () - a0C" ()}
By —1

sep, =

A visualisation of this method is shown in Figure 4.3. Using B; = 1000 and By = 200, our confidence
intervals are calculated as

e 95% upper confidence interval — 0.6917405

e 95% lower confidence interval = 0.6115309

19

‘Burddeaysyooq jo s1ofe] om) uisn DNy UO S[EAISIUI 20UapHuod j-delysjooq Sunyueweidwr 10j sseoord de1)sjooq a1} Jo UOIYeSIBNSIA :g'¢ 9IS

OOV + (HT ¢ 1E) =X ¢ of

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD

PIIOA Teoy]

(eg ‘1g) .00V « (L=

priopy deiysjoog

N
_ (e)yes _p 1—%g _ _ (1 . 2y
ogv—(la),0av Ca).z z ANT.QMV*OQ«\\S,ETQQ«QHN\MNV (ter) .25
! N
T
(1) 00y « (lot1a) = ¥ lax
(g),00v + (fz ¢ ilr) = Tax
(1),00Vv « (Jzolz) = Ix
Ammhﬁv*ogzw — ANH, ‘Ir) = Nm—,wun
N
_ (aes 1-%g — o
oav—(D,0av 0.z < z AN.T.i*DQQ\S,Z*OELHNMMNV (.2
T
) v
AH;V*ODAN — AN&?.. »MRV — T Hun

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 20

3.2.4 Percentile bootstrap confidence intervals

Here we generate B independent bootstrap data sets xj,x3,...,xp and for b = 1,...,B we compute
AUC*(b). We order these bootstrap replications and define AUC;(Q) to be the 100 - ath empirical

percentile of the AUC*(b) values. Similarly, we define AUC;(PQ) to be the 100 - (1 — «)th empirical
percentile. The 1 — 2« percentile interval is then defined as

[AUCy®, AUCH)

Our confidence intervals using B = 1000 are obtained as
e 95% upper confidence interval — 0.6967083
e 95% lower confidence interval = 0.6180078

3.2.5 Comparison

We summarise our results in Table 3.3. As we might have expected there is only a small discrepancy
between Student’s t and Gaussian Normal confidence intervals, due to the large data set. Interestingly
our bootstrap-t confidence intervals have a smaller upper and lower value and the percentile method
produces a larger lower and upper confidence interval.

’ \ Lower Confidence Interval \ Upper Confidence Interval ‘

Gaussian Normal 0.6151854 0.694923
Student’s t 0.6151437 0.6949647
bootstrap-t 0.6115309 0.6917405
Percentiles 0.6180078 0.6967083

Table 3.3: Summary of our Results for one General Linear Model

In the literature, we find that percentiles is the preferred method due to its robustness, as indicated
in Skalska (2006) [9]. Furthermore, bootstrap-t confidence intervals are computationally expensive to
compute. With both of these things in mind, we shall use this as our favoured method for future
applications.

An explanation for the difference in results between the percentile and both the normal and Student’s
t intervals could be due to the nature of a stochastic process, which the bootstrap methodology falls
under. We might expect that for larger values of B we obtain values which are closer. We shall explore
the effect of B on our standard error in the following Section.

3.3 Number of bootsamples

In the above algorithm we took our value of B as 1000. If we consider Figure 3.5, we can see that the value
for the mean of our bootstrap converges as the number of bootstrap samples increases. Furthermore, a
value of B = 200 provides a relatively accurate estimation of our AUC, given limited computer processing
speed [Appendix 7.4].

3.4 Limited data set

We shall now look at a specific application of the bootstrap methodology. When building a score card
we have emphasised that it is important for us to measure its performance on an independent data set,
which we refer to as the testing data set. If we measure the performance of a model on the same data
set as it is built on, it is likely we will over estimate its AUC due to over-fitting. However, if we consider
a situation where we are dealing with a small data set it might not be practical to obtain a separate
hold-out sample. If this is the case, one can use cross-validation or bootstrapping to obtain unbiased
estimates as outlined by Lyn Thomas [7, p.102]. We shall first look at cross-validation as a potential
solution before analysing how we might implement the bootstrap algorithm.

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 21

0.035
L
0.865
L

0.660

0.030
I

0655
I

Standard Error
0.025
L
Mean

0650
I

0.020
I
0.645

0.640

0.015
I

T T T T T T T T T T T T
200 400 600 800 1000 200 400 600 800 1000

o
o

Number B Number B

Figure 3.3: Effect on the standard error and mean as the number of bootsamples is increased.

3.4.1 Cross-validation

Here we divide our data set into K subsets, building a model on each and then testing on the complement.
This generates K models and K unbiased estimates of each models performance. A visualisation of this
is given in Figure 3.6.

Data Set; — Model 1
Data Set] — AUC;

e

Data Set
hV
Data Setx — Model K
Data Setf, — AUCk

Figure 3.4: Cross-validation method. We divide the data set into K subsets.

There are two methods to implement this, the rotation method and the leave-one-out method. In the
rotation method the data set is divided into K non-intersecting subsets. A score card is then built on
K — 1 data sets and tested on the other data set. The overall score card is made up of the average of the
estimates for each characteristic and a measure of its performance is the average of the AUCs.

In the leave-one-out approach each data point is left out in turn and a score card is developed on
the remaining data. The overall score card is then an average of those obtained. However, using this
approach, one would need to implement a different performance measure than AUC and additionally
one would need to generate a large number of score cards. Therefore, for many practical purposes the
rotation method might be preferred.

3.4.2 Bootstrapping

Our objective is to obtain an unbiased estimate for the performance of a model. In an ideal scenario this
model is built on one data set and the corresponding AUC is calculated on an independent testing data
set. However, for a situation where we do not have a large enough data set to do this, we are restricted
to building and testing a model on the same data. In order to estimate the performance of this model,
had it been tested on an independent data set, we could use the bootstrapping methodology.

For a data set of size N, we re-sample this with replacement B times to obtain B training and test
data sets. We then develop B models on each and calculate the corresponding AUC on both the training

CHAPTER 3. BOOTSTRAPPING A CREDIT SCORECARD 22

training} — Model 1 — AUC;

S
Data Set]
hv
testing} — AUC®,
/
Data Set
N\
trainingf; — Model B — AUCp
a
Data Set}
hS

testingy, = AUCp

DataSet — Model — AUC

Figure 3.5: Visualisation of how we might bootstrap a limited data set.

data set and the test data set. As discussed previously we expect the AUC obtained for the training data
set to be higher than that obtained using the independent test data set. Here we shall denote AUC}, as
the AUC obtained using the training data set and AUCY] as the AUC obtained using the test data set,
for b=1,..., B. A visualisation of the methodology is given in Figure 3.7.

An important assumption is that the mean of the errors AUC}, — AUCS, is a good estimate for the
difference between the AUC obtained when the model is tested on the same data set, denoted AUC,
minus the AUC obtained if its performance were measured on an independent data set, denoted AUC.
Therefore, we have

B
. - AUCy, — AUCE
AUC ~ ATC — <Zb—1 ch e b)

Since we re-sample the original data set with replacement, the chance that Data Set; does not contain

an element of the original data set is (1 — %)N As N — oo this converges to 1/e. Therefore, there is a
1/e chance the data point is not in Data Set; and a 1 — /e chance it is in Data Set}. As a result, a more
stable estimate can be obtained as [7, p.104]

B
. 1 1
AUC = E (1 — e) AUC] + (e) AUG,

b=1

We now seek to demonstrate this technique.

3.4.2.1 Application of the bootstrap

Consider the same model as before, however with a smaller data set of only 1000 individuals. Using
B = 1000, the AUC for the model when its performance is measured on the same data set, denoted AUC,
is given as 0.690485. Using the bootstrap technique, we calculate an estimate for AUC as 0.6872121. As
expected this estimate is lower than AUC. [Appendix 7.5]

We shall now consider how we might apply the bootstrap methodology with the aim of comparing
score cards.

Chapter 4

Comparing Models

4.1 Hypothesis testing

A hypothesis test allows us to compare models in an effective manner. If we have an established model
A and a new model B such that B has a higher AUC than A, then we might wish to test whether this
difference is statistically significant. In credit scoring literature, the new model is often referred to as the
Challenger, whilst the current established model is referred to as our Champion. We consider the null
hypothesis that the AUCs produced by each model are equivalent.

We start by considering the Mann-Whitney test as a potential method to find confidence intervals on
the difference between models. We demonstrate some of the limitations of the methodology and show
how we might employ the bootstrap algorithm as a way of constructing a hypothesis test.

4.2 Mann-Whitney Test

If we consider our data set x of n individuals to be made up of p bads and g goods such that x =
(r1,..sTp, 81, ..., 8¢) = (r,s), n = p+gq, then the area under the ROC curve is equal to the Mann-Whitney
two-sample statistic applied to the two samples r and s. We can therefore apply the general theory
of U-statistics. The Mann-Whitney statistic estimates the probability, 6, that a randomly drawn good
individual has a lower score than a randomly drawn bad individual [10, p.838]. Our estimate is computed

as
.1 3
0=—>"> 1(ris;) (4.1)
qu:li:l
where
1 S<R
»(R,S)={1 S=R
0 S>R

Therefore, E(f) = 0 = Pr(S < R) + 1Pr(S = R). This is equal to the area under our ROC curve |8,
p.276]. Confidence intervals can then be found using the theory as outlined in DeLong [10, p.838-841].

However, further complications arise when comparing the difference in AUCs between two models
based on the same data. In this case we must also take into account the correlated nature of the data.
Therefore, we not only have to compute the variance of each AUC, we must also compute the covariance
between them. If we define the Null Hypothesis to be such that both AUCs are equal, we find that test
statistic T is defined as

(U1 = Up)?
012]1 + 0%2 — 20y, 01,

Where U; and U, are found using the formula as given in (4.1). This T statistic is asymptotically
x? distributed with one degree of freedom, which allows us to compute our critical value for a given
confidence interval « [8, p.281].

23

CHAPTER 4. COMPARING MODELS 24

As we can see, this methodology is not only complex in its execution, it also requires considerable
theoretical consideration. Another potential method is to apply the Wilcoxon signed-rank test, however,
this also suffers similar constraints. As a consequence bootstrapping may be considered preferable due
to its simplicity.

4.3 Bootstrapping the difference in AUCs

We made reference to a fundamental problem in the previous section, when comparing AUCs produced
by models based on the same test data set, there exists correlation between these values. Bearing this in
mind we shall consider the Two-Sample bootstrap problem, with the aim of comparing two models.

4.3.1 Two Sample Bootstrap

So far we have just considered the basic case of a one-sample bootstrap problem. This is where our data
x is sampled from a single probability distribution F. In this case we can refer to F' as the probability
model. We’ll now consider the more complex two-sample problem [1, p.202].

Suppose we have a generalised probability model P which is comprised from two probability distribu-
tions F' and G. We denote this as P = (F,G). If we denote z = (21, ..., z;,) as a random sample observed
from G and y = (y1,...,y-) as a random sample observed from F, then the observed data x comprises
of z and y. We denote this as x = (z,y) where x has length n = m + r. We therefore have y and z
mutually independent random samples taken from F' and G respectively. This set-up is known as a two
sample problem.

If we consider the case of model building with only one test data set, we can see that we do not
have two mutually independent random samples and therefore it would be naive to directly compare
confidence intervals on AUC. A potential solution is to therefore split our original data set into three
mutually exclusive sets: one training set and two test data sets, such that the test data sets are of the
same size. We can then independently compute each model’s AUC. However, this potentially generates
further problems. How do we generate these data sets? How can we assume that if a particular model
outperforms another this is not as a result of it being tested on a different data set?

Our specific question is whether the distribution F' is the same as the distribution G. Recalling that
the data set is time indexed, this might not always be the case, dependent on the method used to divide
the data sets up. To proceed we can employ the two sample problem set-up to formulate a hypothesis
test. If we find a lack of evidence that the distributional forms of the two data sets differ, then we might
assume we could effectively compare score cards built on different data sets.

4.3.2 Proposed Methodology

We aim to use the bootstrap method to test whether the difference between two AUCs is statistically
significant. We therefore impose the following hypothesis test:

e H;: The difference between the two AUCs is significant.
e Hjy: We have no evidence that the difference between the two AUCs is significant.

In order to tackle this hypothesis test we divide our data set into three mutually exclusive sets, one
training set and two test data sets, such that the distributional form of the two test data sets are F' and
G, respectively. We then consider the hypothesis test:

L] HlF#G
[H()ZF:G.

If it is the case that we have no evidence that F' # G, then we might assume the distributional forms are
identical. We then proceed by considering whether the mean bootstrapped AUC generated from each
data set are equivalent.

e H;: The mean of bootstrapped AUCs generated from z differs from the mean of the bootstrapped
AUCs generated from y.

CHAPTER 4. COMPARING MODELS 25

e Hj: Mean of the bootstrapped AUCs generated from z equals the mean of the bootstrapped AUCs
generated from y.

We shall outline how we might tackle these two hypothesis tests before outlining several potential problems
in Section 4.3.6.

4.3.3 Algorithm for testing distributional forms

We consider the null hypothesis Hy: F' = G vs. the alternate hypothesis Hi: F # G and interpret the
algorithm given in Efron [1, p.221] as follows

1. Draw B bootstrap samples of size m + r with replacement from x. Call the first m observations z*
and the remaining r observations y*.

2. Evaluate s(-) defined by
s(xp*) = AUCL(b) — AUC,(b), for b=1,2,..,B

where AUC(b) corresponds to the AUC generated under the first model from data set z* for
bootstrap sample b.

3. Approximate the achieved significant level (ASLyqot) as

N *) >
ASLpoot = # {S(ngf Sobs }

where sqps = $(x) is the observed value of the statistic.

A visualisation of this procedure is given in Figure 4.1.

Bootstrap World
vi — AUC4(1) . -
7 AUCy(2) [5(¥1) = AUG(1) — AUGI(T)
e
x=(y,z)
hN
vg — AUC:(B) N -
7t — AUCy(B) [~ 5(XB) = AUC(B) — AUC:(B)
f
Real World
Yy — AUC,
/ N \
Data Set — training Sops = AUCy — AUCY
¢ N P

Z — AUCQ

Figure 4.1: The two different models are built on the same training data set, but are tested on different
test data sets.

4.3.4 Algorithm for testing equality of means

If the two data sets have the same probability distribution, then we could consider whether the mean
of the two statistics are equal. We consider the null hypothesis Hy: The mean AUC generated from
the model tested on z is equal to the mean AUC generated from the model tested y vs. the alternate
hypothesis Hy: The mean AUC generated from z differs from the mean generated from y. This could
potentially allow us to compare whether one model outperforms another by comparing AUCs. The
algorithm as presented in Efron [1, p.224| can be interpreted as follows

CHAPTER 4. COMPARING MODELS 26

1. Form B; bootstrap data sets (z*,y*) where z* is sampled with replacement from z1, 29, ..., 2, and
y* is sampled with replacement from y1,ys, ..., Yr.

2. Evaluate AUC;(1),..., AUCH(B;) and AUC3(1), ..., AUCS(B;) where AUC?(b) is generated from y*
and AUC}(b) is generated from z*. For ease of notation we’ll refer to these sets as AUC; (1), ..., AUC;(By)
and AUCQ(l), ceny AUCQ(Bl)

3. Evaluate AUC, (i) = AUC;(i) — AUC,(-) + AUC and AUC,(i) = AUCy(i) — AUCy(-) + AUC,
i=1,2,..., By, where
B
_ N AUG () .
AUCJ() = bz::l Tl fOr] = 1,2

and AUC is the mean of AUC;(-) and AUC,(-).

4. Form By bootstrap data sets (AUC], AUC2") where AUC] is sampled with replacement from
AUC;(1),...,AUC;(B) and AUCH is sampled with replacement from AUC3(1), ..., AUCs(By). De-
note AUC; (b) = (AUC, (b,1),..., AUC; (b, By)) and AUC,(b) = (AUC,(b, 1), ..., AUC,(b, By)) for
b=1,..,Bs.

5. Calculate AUC, (b) and AUC,(b) for b = 1, ..., By, where

B -~ .
S AUC; (b
ATC;(b) = # for j=1,2

i=1

6. Evaluate s(-) defined by

AUC,(b) — AUC,
s(AUCL") = UCQ(Q* E*Cl(b) for b=1,2,...,B (4.2)
B T 5

*

where 67" = 5 27 (AfJCl(b, i) — Ach(b)) and 63 = g Y2 (AfJCg(b, i) — AUCQ(b)).

7. Approximate the achieved significant level (ASLpoot) by

#{s(AUCY) > Sobs |
By

ASLboot =

where s,ps = s(x) is the observed value of the statistic.

For normal populations equation (4.2) no longer has a Student’s t distribution, which in the literature is
referred to as the Behrens—Fisher problem [1, p.223]. A visualisation of the procedure is given in Figure
4.2.

4.3.5 Rational

In both hypothesis tests we made reference to an Achieved Significance Level (ASL), this is a measure of
the rate of evidence against Hy. We shall use the guidelines given in Table 4.1 as a basis for any decisions
made.

ASL < 0.10 | Evidence against Hy

ASL < 0.05 | Reasonably strong evidence against H
ASL < 0.025 | Strong evidence against Hy

ASL < 0.01 | Very strong evidence against Hy

Table 4.1: Rate of evidence against Hy as given in Efron [1, p.204]

We also note some fundamental subtleties in the above methodology. In our second hypothesis test,
Hy is that the means are equivalent. We therefore require a distribution that estimates the population

CHAPTER 4. COMPARING MODELS 27

v — AUC (1)
e
: AUC, (-
y - 1(1)
hN
y]*31 — AUCl(Bl)
— AUC
z} — AUC,(1)
e
” : — AUC (")
AV
Zgl — AUCz(Bl)
yi = AUC,; (1) — AUC, (1) (AUC; (1,1),...,AUC] (1,B1)) — AUC; (1)
a e
P ; ~AUG
N B ¢ _ . o
¥yg, — AUC1(B1) — AUC:(B1) (AUC] (B2, 1), ..., AUC] (B2, B1)) — AUC] (B2)
— s(AUCR™)
z} — AUC,(1) — AUC2(1) (AUC;(1,1),...,AUC;(1,B1)) — AUC, (1)
e e
a : = AUC:
hN . N B B o
zf, — AUC2(B1) — AUC2(B1) (AUCS (B2, 1), ..., AUCS (B2, By)) — AUC, (Bs2)

Figure 4.2: Method used to obtain AUC (-), AUCy(-), AUC used to evaluate AUC; (i) and AUC, (i) for
i =1,2,..., By and how we then evaluate our statistic s(AUC”").

under Hy. Neither the distribution F' nor G satisfy this condition. Using the following translation
AUC, (i) = AUC, (i) — AUC, (-) + AUC, however, we are able to construct a null distribution for the data
under Hy [1, p223].

Also, we should note that in both of the above algorithms, it is assumed that s.,s > 0. For the case
when s.,s < 0 we adjust ASLpoor to

{s(AUCY) < sops}
By

ASLboot =

Using the above algorithms we therefore could attempt to use the methodology outlined in Section
4.3.2 to compare score cards. However, there are problems with this approach as we shall demonstrate
with the following example.

4.3.6 Example

We consider the probabilities of default for two separate data sets each comprising of 100 individuals.
The first data set, y, is sampled from a N(0.5,0.1) distribution and the second data set, z, is sampled
from a U(0.4,0.6) distribution. If we compare histograms of the observations as in Figure 4.3, it might
be considered obvious that the two distributions are not the same. However, when implementing our
algorithm to compare distributional forms, our hypothesis test provides a ASL of 0.199 and therefore finds
no significant evidence that the distributions are different [Appendix 7.6]. We obtain similar problems
when using our actual data set.

Let’s consider fixing our two testing sets, such that the first testing set is taken from the first 25%
of the data and the second data set is taken from the last 25%. We build just one score card using the
same variables as in the previous chapter on the centre 50% of the data and measure its performance on
both test data sets. Using just one model we find that the AUC when tested on the first 25% of the data
is 0.7533052, however when it is tested on the last 25% of the data is only 0.5664593. This suggests that
the model seems to perform far better on past data than future data. We implement our distributional
form algorithm and find an Achieved Significance Level of 0.528, indicating that the data is from the
same distribution, however the Achieved Significance Level when testing the equality of means is 0, which
provides incredibly strong evidence that the means are different. The key point here is that we only built

CHAPTER 4. COMPARING MODELS 28

100 points for y sampled from a N(0.5,0.1) distribution 100 points for z sampled from a U{0.4,0.6) distribution
o _ —— T H
© —_—
o~ —
w | o
™~ —
Q]
= ﬁ = =
2 2 o 4 —
8 anp | 3
o o o
o g o
[T o w
| < -
" —r_l—v—\ .
o e @

T T T T T T 1 T T T T 1
02 03 04 05 06 07 08 0.40 045 0.50 0.55 060

¥ z

Figure 4.3: Histogram of 100 observations taken from a N(0.5,0.1) distribution and 100 points sampled
from a U(0.4,0.6) distribution.

one model, so any differences in the AUCs must be due to differences in the distributional form of the
test sets. As we can see there is a definite flaw in our method as we have neglected one key fact, that the
data is time dependent.

This finding is particularly problematic. If we cannot fairly or accurately test whether the distribution
of the two data sets are identical any further results are unreliable. We shall therefore consider a different
method to bootstrap performance measures.

4.4 Bootstrap the difference in AUC

When discussing the Mann-Whitney method, we noted that there exists correlation between the values
when comparing AUCs produced by models based on the same test data set. As we have demonstrated,
it is naive to simply take two test data sets to try and avoid this problem. However, we can employ
the bootstrap algorithm to provide a potential solution. We note that when we find percentile bootstrap
confidence intervals we make no assumptions about the form of the standard error. The intervals are
inferred directly from the distribution of the bootstrap replications. It is therefore possible to obtain
estimates for our confidence intervals on the difference in AUC. We state this formally as follows [1,
p.107]

1. Generate B independent bootstrap testing data sets xj,x3,...,x5 and for b = 1,..., B compute

AUC; (b) and AUCS (b)
2. Calculate d, = AUCY (b) — AUC5(b)

3. Order these differences and define dsga) to be the 100 - ath empirical percentile of the d; values.

Similarly, we define dg_a) to be the 100 - (1 — «)th empirical percentile. The 1 — 2« percentile

interval is then defined as @ 1w
e

We then consider the hypothesis Hy: The difference is zero vs. Hy: the difference is not zero. If the value
0 is not within our confidence intervals then we can reject the null hypothesis at significance level a.

4.4.1 Difference between models is potentially insignificant

We consider two identical models, which differ only by one term, corresponding to a random variable, r;,
where r; «~» N(0,0.1). We might expect that this extra random variable will do little to change the model
in any significant manner. The other variables are: the first age quintile, the second and third months at
address quintile, and whether the person is a home owner or a council tenant. We obtain the following
results [Appendix 7.8]:

CHAPTER 4. COMPARING MODELS 29

Insignificant difference in AUC's Significant difference in AUC's
e - o
3 -
o™ —
o
w
- 2
i
2y z
e C (=)
s 5 s ¢
(L 2
[N IS
[=)
% . [Ie]
o - (=)
T T T T T T 1 T T T T T T T 1
-0020 -0.015 -0010 -0005 0000 0005 0010 000 001 002 003 004 005 006 007
bootaucdiff bootaucdiff

Figure 4.4: Histogram for an statistically insignificant and significant differences between AUCs.

e AUC from model 1 = 0.6613746

e AUC from model 2 = 0.6649872

e Difference in AUCs= -0.003612672

e 95% upper percentile Confidence Interval = 0.004792017
e 95% lower percentile Confidence Interval = -0.01156245

We can see that the confidence intervals contain zero and therefore we do not accept Hj.

4.4.1.1 Difference between models is significant

Here we consider the first model as above, however the second model has just one variable, whether the
person is a home owner. We obtain the following results [Appendix 7.7]:

e AUC from model 1 = 0.6734853

e AUC from model 2 = 0.638587

e Difference in AUCs= 0.03489835

e 95% upper percentile Confidence Interval — 0.05669581
e 95% lower percentile Confidence Interval — 0.0142205

Since zero is not included in our confidence intervals, the difference between these two models AUC is
statistically significant. We therefore reject Hy with significance level a. A histogram of our bootstrap
replications for both examples is given in Figure 4.4.

As we made clear when comparing AUCs generated from a model tested on the first and last quarter
of the data, the time dependence is incredibly important. We shall now consider how we might employ
the bootstrap methodology for time dependent data with a specific focus on homogeneous populations.

Chapter 5

Homogeneous Time Dependent Data

5.1 Introduction

As we mentioned in the previous chapter, we have thus far neglected the key time dependent element of
our data. We demonstrated that if we build a model on the middle half of the data and then test its
performance on the first and last quarter we obtain very different performance measures. We shall start
by investigating the nature of the default rates.

It is important to emphasise that this study assumes a homogeneous, or equivalent, population.
There is also the problem of right-censored data, due to a considerable number of accounts being closed
prematurely, or failing to default before our study ends at relative month 41. We will later consider
survival analysis which deals with this specific issue.

We consider the month the account was opened as a time stamp and we can see in Figure 5.1 that
if we divide the data up into blocks of 5%, accounts which were opened earlier in the data set, were on
average less likely to result in a default.

Default percentage

20
1

Ya

15

10

T T T T
5 10 15 20

Data divided into 20 blocks of 3%

Figure 5.1: Relative number of defaults dividing the data set up by month or in blocks of 5%

We might take the view that the default rates are not simply just a random sample from a distribution,
arguing that there is too much structure. If we assume that on average the individuals that make up
each month are roughly equivalent, then the changes in the default rate are, at least in part, as a result
of changes in the macro-economic environment.

We consider whether it is possible to model this default percentage as a time series. Using the ar
command in R it can be shown that it fits a first order autoregressive model to the data, we’ll therefore
use this as the basis of our study.

30

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 31

5.2 Autoregressive model theory

A first order autoregressive model, denoted AR(1), satisfies the following difference equation
Yi=c+oYi1+&

where {,} is a white noise process, such that its mean is zero, its variance is 0 and the &’s are uncorrelated
across time [14, p.47].

We say that {Y;} is stationary if both the mean and variance are independent of t and E {Y;,,Y;,} is
a function of the absolute distance |to — 1| only. Similarly for the covariance between Y, and Y;,.

For a discrete time stationary process define the autocovariance sequence s, as s, = cov { X, X¢yr 1},
where 7 is called the lag. We also define the autocorrelation sequence by
_ S+ - cov {Xt,Xt+7—}
pr=—"=———>5""
S0 g
here sg = cov {X;, X} = var {X,}.

We are able to write our difference equation as

Yi = c+ oY1 +ey

ctolc+dYiote1)+er
= Wit o(cte)+ (e +c)

Dhco " (c+eik)
L)
= 124, + Zk:O ¢k€t—k

Note E(Y;) = pi = %5 and var (Y;) = E(Y; — p)* = E (X526 eri)’ = 02 Y 6% = 125, For
var (Y;) < oo we therefore require |¢| < 1.

It can also be shown that p, = ¢!/7! for 7 = 0, £1, £2 [14, p.54] and thus obtain an exponentially
declining autocovariance sequence. We shall now consider how we might fit an autoregressive model to a
time series.

5.3 First order autoregressive model simulation

Let’s consider the following data in Table 5.1 which we might wish to fit a AR(1) model to.

’ Period ‘ Score H Period ‘ Score H Period ‘ Score H Period ‘ Score H Period ‘ Score ‘

1 0.000 11 0.091 21 -0.157 31 0.006 41 0.197
2 -0.074 12 0.122 22 -0.071 32 0.027 42 0.203
3 -0.300 13 0.026 23 0.075 33 0.156 43 0.094
4 -0.340 14 -0.003 24 0.068 34 0.083 44 0.094
5 -0.175 15 0.008 25 0.097 35 0.196 45 0.164
6 -0.007 16 0.001 26 0.236 36 0.190 46 0.350
7 -0.075 17 -0.125 27 0.079 37 0.058 47 0.331
8 -0.021 18 -0.179 28 0.009 38 0.119 48 0.201
9 0.020 19 -0.094 29 0.202 39 0.130 49 0.275
10 0.082 20 -0.093 30 0.066 40 0.245 50 0.117

Table 5.1: Average credit scores over 50 periods

We shall demonstrate how we might estimate our parameter using least squares estimation as described
in Efron [1, p.94].

Defining y; as the realisation of Y; we begin by estimating E (Y;) = u using gy (0.05412222 for our
data) and then setting z; = y; — ¥, such that x; is the realisation of the first-order autoregressive process
X;. If we let ¢ be our guess for the true value of ¢. We then define the residual squared error (RSE) as

N
RSE (p) = Y (2t — pz-1)°

=2

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 32

The residual squared error then achieves its minimum when ¢ is close to the true value of ¢, so we
estimate our value of ¢ as

RSE(¢) = min,RSE (¢)

For an AR(1) process this is computed as
é=(XTX)" X"x

where x = (22,23, ...,xx) and X = (21,22, ..., TN _1)-
We shall demonstrate how bootstrapping residuals or block bootstrapping can be used to determine
how accurate our estimate ¢ is.

5.3.1 Bootstrapping residuals

Let’s assume our probability distribution F’ and ¢ are unknown, however our mean p is known and equal
to §. We begin by computing what Efron [1, p.95] defines as approzimate disturbances

€y =Ty — T4

If we let N = Total number of observations, we have N = 50 for our example. We therefore estimate F
using the empirical distribution F where this puts a probability ﬁ on each of the points &5, ..., en.

In order to implement our bootstrap algorithm we begin with an initial value 1 = y; — y which is
treated as a fixed constant. We then calculate the bootstrap time series as

T3 = ¢z1+¢5

Ty = or5+ e}

* _ 7k *
TN = OTN_ FEN

where our €} values are randomly sampled with replacement from (g3, ...,e%,). This algorithm is repeated
for some large number B to provide B estimates ¢*.

Histogram of phiboot

100 150
| 1

Freguency

50
|

T T T 1
0.2 04 06 08

phiboot

Figure 5.2: Histogram of the B = 1000 bootstrap replications of é Interestingly this appears to have a
long lower tail and does not appear to be perfectly normal.

Using the original data as given in Table 5.2 we estimate ¢E as 0.770174. On implementation of our
algorithm with B = 1000 we estimate our percentile confidence intervals as [Appendix 7.10]

e 95% upper confidence interval — 0.9006665
e 95% lower confidence interval = 0.5088065

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 33

We also estimate the standard error for our bootstrapped estimates of g&* as 0.1007956. In Figure 5.2 we
can see that the histogram does not appear to be normal. Lower values for ¢ would correspond to an
autoregressive process where the random, white noise process has a greater influence. Taking the mean
of our bootstrap sample for é gives a value of 0.7416875, below that estimated using the original data.
However, this might not be considered surprising, given that such a small sample was provided for our
autoregressive process.

We shall now consider block bootstrapping as an alternate method to estimate the accuracy of (2)

5.3.2 Block bootstrapping

Block bootstrapping is a method which samples the time series in blocks. Chernick explains that for
stationary time series, successive observations are correlated but observations separated by a large time
gap are uncorrelated [13, p100]. This can be seen by the exponentially declining autocorrelation function
for a stationary AR(1) model. The autocorrelation function, shown in Figure 5.3, follows this approximate
structure.

Autocorrelation function

ACF
02 00 02 04 06 08 10

Lag

Figure 5.3: Autocorrelation function for our data

For this method, rather than fitting a model and then sampling from the residuals, we sample from
the time series itself and then fit the autoregressive model [1, p.101]. However, unlike with the normal
bootstrap methodology, instead of re-sampling individual data points we sample blocks of data points.
This allows us to retain the time dependent nature of the data. We illustrate the general principle in
Figure 5.4.

L1, 22,23 LT4,T5,T6 X7, T8, T9 210,211, T12
* * * * * * * * * * * *
Ly,To, T3 Ly T5,Tg L7, Tg, Ty L105 %115 %12

Figure 5.4: Block bootstrapping methodology. Specifically this is the non-overlapping block bootstrap
method with block length 3.

There are 4 main block bootstrapping methods we shall describe. These are [13, p.104]
e Moving block bootstrap

e Non-overlapping

e Circular

e Stationary

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 34

The idea is to re-sample the data points in blocks such that we re-sample just enough blocks to obtain
a series of roughly the same size as the original time series [1, p.101]. The block length I is chosen such
that observations more than [units apart are independent. We therefore retain the correlation within
the blocks. We shall provide an overview of each method.

5.3.2.1 Moving block

For the moving block bootstrap we choose k blocks of length [, such that n =~ k - [, where it is possible
for the blocks to overlap. Specifically for an original data set of size n, define k = floor(7) and N =k - [.
We then generate k blocks of size | to form a bootstrapped data set of size N. When estimating the
standard error we must remember to multiply by 1/N/n to adjust for the different lengths in the series [1,
p.101]. We illustrate the method with the following example. Suppose we have data: x = (z1,...,T12)
and wish to construct blocks of size 3, we begin by constructing 10 blocks of length 3: y; = (x1, z2, x3),
ye = (29,x3,24), ..., Y10 = (Z10,211,212). We can then sample 4 of the blocks y; randomly and put
these together to form x*. This keeps some part of the dependence, however some is lost when we connect
blocks. Furthermore, we can see that points at the beginning and end of the data series are less likely to
be sampled.

5.3.2.2 Non-overlapping

This is similar to the moving block bootstrap, except that the blocks do not overlap. For example if we
have data: x = (x1,...,212) we can construct 4 blocks of length 3, y1 = (21,22, 23), y2 = (24, 5, x6),
vs = (z7,28,%9), Y4 = (%10, 11, ¥12) and then re-sample the blocks y;.

5.3.2.3 Circular

The circular block bootstrapping method is again similar to the moving block bootstrap however it
periodically extends the series of points to form the blocks. For example if we have data: x = (x1,...,212),
in the normal moving block bootstrap we can only construct 10 blocks. In the circular block bootstrap
we can construct 12 blocks of length 3 by periodically extending the data e.g. y1 = (z1,22,23), y2 =
(2, 23,24), ..., Y10 = (T10,Z11,%12), Y11 = (T11,%12,21),Y12 = (®12,%1,22). We can then sample the
blocks y;. Unlike the moving block bootstrap and the non-overlapping bootstrap, the circular bootstrap
method assigns equal probabilities to each of the original observations.

5.3.2.4 Stationary

Here we again periodically extend the data structure in a similar manner as in the circular block bootstrap.
However, instead of using a fixed block length, the block length is given using the random length L, where

Pr(L=j)=(1—-p)Y'p forj=1,23,..

This follows the geometric distribution with parameter p. The mean block length for L is p~'. We
therefore choose p in the same manner as we choose a fixed block length [13, p.105] and select the start
point of each block by sampling with replacement from {1,...,n}. The blocks are then placed together to
form our bootstrap replication [3, p.1304].

5.3.2.5 Implementing the block bootstrap algorithm

We now aim to implement the block bootstrapping algorithms, but first must select a block length I.
From our autocorrelation sequence in Figure 5.3 we can see that for lag 5 or more the observations
are approximately uncorrelated and therefore | = 5 might be a sensible choice for our block length.
Furthermore for [= 5 in the moving block, non-overlapping and circular algorithms, we ensure that
the block bootstrap replications are of the same size as the original data set. For the stationary block
bootstrap we set p = 0.2 such that the mean block length is 5.

In Table 5.2 we find summary statistics for our block bootstrap replications. Our parameter, qAb, using
the original data was estimated as 0.770174. However, we see that in all four block bootstrapping cases
we estimate our parameter ¢ closer to 0.6. Furthermore, the Stationary and Moving Block algorithms

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 35

Moving Block Bootstrap Non-overlapping Block Bootstrap

150 200
1 1 |

100 150 200 250

Frequency
100
Frequency

50

0
0
L

02 03 04 05 06 07 08 09 02 03 04 05 06 07 08

bootreplications bootreplications

Circular Block Bootstrap Stationary Block Bootstrap

200
]

150
L
150

100

Frequency
100
L
Frequency

50
1
50

T T T T T T 1 T T T 1
02 03 04 05 08 07 08 02 04 08 08

boofreplications bootreplications

Figure 5.5: Histograms from our block bootstrap replications

] | Standard Error | Upper CI | Lower CI | Mean

Moving Block 0.0952694 0.7672566 | 0.4011084 | 0.6217096
Non-overlapping || 0.09758468 0.7788323 | 0.3936644 | 0.6338416
Circular 0.1029845 0.7730011 | 0.3683701 | 0.6080378
Stationary 0.1845657 0.7648305 | 0.3127508 | 0.5918667

Table 5.2: Summary statistics for our block bootstrap replications [Appendix 7.11 - 7.14].

do not include 0.770174 within the 95% confidence interval. This is likely to be as a result of the long
tailed, non-normal shaped histograms for our bootstrap replications, as shown in Figure 5.5.

In actual fact the data in Table 5.1 was generated using Y; = 0.8Y;_1 + ¢; where ¢; ~ N(0,0.1) and
initial condition Y3 = 0 [Appendix 7.9]. Using the inbuilt ar(-) function in R we obtained the following
estimates

e Coefficient estimate: 0.7673
e Standard error: 0.09447

Chernick describes some of the problems of block based bootstrapping methods, in particular that the
re-sampled blocks do not quite mimic the behavior of the time series and that they have a tendency to
weaken the dependency in the series. A potential solution is to re-sample blocks of blocks [13, p.105].
This is described in detail in Reference 5.

An overall problem with either of the above methods is that we need to know which model to fit to the
data beforehand. Without considering more, higher order autoregressive models we cannot accurately
say that this model is appropriate.

We shall now consider the case of fitting an autoregressive model to our default rates as shown in
Figure 5.1.

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 36

5.4 Default Rates autoregressive model

We shall use the default rates when the data is divided into 5% blocks. A breakdown for these values is
given in Table 5.3.

’ Percentile ‘ Default Rate (%) H Percentile ‘ Default Rate (%) ‘

5% 16.88 556% 17.32
10% 16.45 60% 20.35
15% 8.66 65% 24.24
20% 8.66 70% 23.81
25% 8.23 75% 16.45
30% 10.39 80% 17.32
35% 12.55 85% 18.61
40% 12.99 90% 19.48
45% 12.99 95% 21.21
50% 15.58 100% 23.38

Table 5.3: Realised default rates for our data divided into blocks of 5%

We estimate (;3 as 0.8608599 and start by bootstrapping the residuals. With B = 1000 we estimate
our percentile confidence intervals as

e 95% upper confidence interval — 1.033468
e 95% lower confidence interval — 0.3993687

We plot our histogram for bootstrap replications of <;§ in Figure 5.6 and similarly to what was obtained
previously, the distribution appears relatively non-normal, with a long lower tail. We estimate our
standard error as 0.1661599 and the mean of our bootstrap sample for ¢3 gives a value of 0.8034312, which
is again below that estimated using the original data. Interestingly the 95% confidence interval has an
upper bound greater than 1. For a stationary autocorrelation function we require |¢| < 1 and therefore
we cannot assume that if an autoregressive model is appropriate for our default rates, that this process
is stationary.

Histogram of phiboot Autocorrelation Function for our Default Rates

150 200 250
I

Frequency
ACF

100
I

0
1
04 00
| |

T T T T T 1 ' T T T T T T T
02 04 06 08 1.0 1.2 0 2 4 6 8 10 12

phiboot Lag

Figure 5.6: Histogram of our bootstrap replications of 6 for B = 1000 when bootstrapping residuals for
our Default Rates and the corresponding autocorrelation function for our data.

We shall now consider block bootstrapping as an alternate method to estimate the accuracy of qAS
We consider the moving block, non-overlapping, circular and stationary block bootstrap techniques.
From our autocorrelation function as shown in Figure 5.6 we can see that after approximately lag 5 the
observations appear to be uncorrelated and therefore we shall use a block length of 5. For the stationary
block bootstrap we set p = 0.2 such that the mean block length is 5. We might also like to note that

CHAPTER 5.

Moving Block Bootstrap

150

100

Frequency

50

08 08

bootreplications

Circular Block Bootstrap

Frequency
S50 100 150 200 250 300

0
L

boofreplications

HOMOGENEOUS TIME DEPENDENT DATA

Non-overlapping Block Bootstrap

300

200

Frequency

50 100

}

Frequency
50 100 150 200 250 200

bootreplications

Stationary Block Bootstrap

|

bootreplications

Figure 5.7: Histograms from our block bootstrap replications

compared to our previous example the confidence intervals for our autocorrelation function are wider, as

shown by the dotted line in Figure 5.6.

|

H Standard Error \ Upper CI \ Lower CI \ Mean

|

Moving Block 0.1213944 0.88054 0.4055437 | 0.6808143
Non-overlapping || 0.08035733 0.8601131 | 0.5517897 | 0.7171497
Circular 0.1295804 0.8601131 | 0.3514478 | 0.6485303
Stationary 0.1400218 0.8355515 | 0.2824104 | 0.630226

Table 5.4: Summary statistics for our block bootstrap replications.

In Table 5.4 we find summary statistics for our block bootstrap replications. Our parameter, ngS, using
the original data was estimated as 0.8608599. However, we see that in all four block bootstrapping cases
we estimate our parameter ¢ closer to 0.65. In addition the Stationary, Non-overlapping and Circular
algorithms do not include 0.8608599 within the 95% confidence interval. This is likely to be as a result
as the long tailed, non-normal shaped histograms for our bootstrap replications.

If we fit an autoregressive model to the process using the inbuilt function in R we obtain the following

estimates
o Coefficient estimate: 0.7707
e Standard error: 0.032955

The above methodology demonstrates how we might model default rates as an autoregressive process.
However, we must note that this interpretation is only meaningful if the characteristics of lenders are
roughly equivalent. In other words, the above requires that the individuals which make up our population
to be homogeneous. As we know this is not necessarily the case.

Furthermore, there exists more problems when calculating the default rates in this manner. Our
method to determine the relative time when the accounts defaulted was to time stamp them using the
opening month. A potential problem is that some of our accounts were closed early. This is referred to as
right censoring. Lyn Thomas [7, p.251] provides an indication about the importance of survival analysis

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 38

within the context of right censored credit scoring data. It is with this in mind, that we shall consider
the Kaplan Meier Estimate of the survivor function, S(¢).

5.5 Survival Analysis

Continuing on the path of assuming the individuals within the population are roughly homogeneous, we
can introduce non-parametric methods to study the survival function for our data [7, p.253]. We shall
start by introducing the survivor function, S(t), which is defined such that

S(t) = P(T > 1)

In the context of credit scoring, we note that the probability of a loan surviving until time ¢ is equivalent
to the person being classed as good. Therefore our survivor function is such that S(t) = Pg(t), where for
ease of notation, we denote Pr(good|data q at time t) = P (t). We also define our cumulative distribution
function, F(t), such that

Fit)=P(T <t)
Therefore F(t) = 1 — S(t) = 1 — Pg(t) = Pgp(t), with the usual definition of the probability density
function as f(t) = %F(t). We also introduce a hazard function, p(t), such that

P(T<t+h|T >t
(t) = i PEELENT 2T

We therefore interpret this as the instantaneous default rate for an individual who has not defaulted up
to time ¢. We also have that u(t) = —%log(S(t)) = —4log(Pg(t)). Defining the cumulative hazard rate

as
t

M(t) = /,u(s)ds
0
it therefore follows that S(t) = Pg(t) = exp(—M(¢)). Finally the log-odds score which was previously

defined as score(q) = log (ﬁgg%), is such that

score(q) = —log (exp (M (t)) — 1)

For our data set we have a number of records where the accounts are closed prior to observing a default.
We aim to estimate our survivor function, based on our data in the presence of right-censoring using the
Kaplan-Meier estimate.

5.5.1 Kaplan-Meier Estimate

Suppose we have n independently and identically distributed individuals who take out a credit product,
but due to the presence of right-censoring we only observe r defaults. If we let ¢; < t5 < ... < t be the
ordered default times, with k£ < r so that it’s possible for more than one account to default at the same
time, then we define d; to be the number of defaults that occur at t;, such that Z?Zl d; = r. We define
¢; to be the censoring time within the interval [t;,;11), such that the numbered of censored observations

is n — r. We define
n;=n-— E ci — E d;
i<j—1 i<j—1

to be the number of loans still outstanding at time ¢;. The maximum likelihood estimate for our survivor
function is defined as J
Pat) =300 = T] (1-2) 65.1)
it <t j

We also define the maximum likelihood estimate of the hazard function p; to be fi; = z—’ An estimate
J
of the standard error of the Kaplan-Meier estimate is given as

ses Pa(t)y =sedS(t) b = S(t) Z% (5.2)
t<t 't (nj —dj)

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 39

which is known as Greenwood’s formula [18]. Using this we are able to apply the central limit theorem
as n — 0o to construct confidence intervals. We plot our Kaplan-Meier estimate for our data in Figure
5.8.

Kaplan-Meier Estimate

Relative Month

Figure 5.8: Kaplan-Meier estimate. Confidence intervals for the empirical survivor function are shown as
dotted lines.

Akrita [15] outlines two different methods to bootstrap a Kaplan-Meier estimate, citing the method
proposed by Efron [18] as providing asymptotically correct confidence intervals. We shall bootstrap the
standard error and compare that with the result obtained using Greenwood’s formula.

5.5.2 Bootstrapping the Kaplan-Meier estimate

We construct a Kaplan-Meier estimate for our data and compare its standard error with that obtained
by Greenwood’s formula. Suppose our data set x is such that it is drawn from an unknown probability
distribution F and x = {(x1, D1), ..., (¥n, Dy,)} where x; corresponds to the month an individual either
defaults or is censored and where we define D; = 1 if individual ¢ defaults and D; = 0 if they are
right-censored.

Efron [12, p.64] begins by making the following - arguably unrealistic - assumptions about the data.
We suppose that the real lifetime X? of each credit product is selected randomly according to the survival
curve

S(t) = Pr{X? > t}

and a censoring time W; is independently selected according to another survival curve
R(t) = PI‘{WZ > t}
We then observe X; = min{X?, W;} and

X0
b, 1 X=X
0 X, =W,

The true survivor function S(t) is then given as the product of the survivor curves for the censored and
uncensored observations, denoted R(t) = Pr(W > t) and S°(t) = Pr(X° > t), respectively.

A method to bootstrap the randomly censored data is to independently sample X%* from S° and W;
from R, and define X} =min(X>*, W}). A more intuitive method, which avoids the above assumptions,
is to directly sample pairs of data points (z;, D;) from x = {(z1, D1), ..., (¥n, Dp)}. In actual fact, Efron
[18, p.314] demonstrates that both methods yield the same result. Our algorithm then proceeds as follows

1. Select B independent bootstrap samples xj, X3, ..., X5, each consisting of n pairs drawn with re-
placement from the observed data set x = {(z1, D1), ..., (Tn, Dn)}.

CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 40

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

*

. d
sy =11 < —n3> forb=1,2,...,.B

Git; <t J

3. Estimate the standard error by the sample standard deviation of the B replications
1
B [a2 2
Dbt {Sb (t)—S (t)}
B-1

sep(t) =

where S§*(t) = % Zszl Sy (t) and

Here t = 8, ...,40 corresponds to the relative months that the accounts either defaulted or were right-
censored. We compare our bootstrapped standard error using B = 100 with that obtained using Green-
wood’s formula in Table 5.5 [Appendix 7.15-7.16].

t= 10 15 20 25 30 35 40
S(t) 0.989 0.953 0.913 0.883 0.863 0.843 0.834
seBoot ~ 0.001470 0.003241 0.004337 0.004708 0.005348 0.005629 0.005489
segreen 0.001547 0.003110 0.004145 0.004725 0.005071 0.005395 0.005527

Table 5.5: The Standard Error of the Kaplan-Meier curve for our account data using B = 100.

As might be expected there is a small discrepancy in the values for the standard error produced using
both estimates. Here we used a relatively small value for B. This was due to considerable computing
constraints due to the large data set which we are dealing with. Nevertheless, the data in Table 5.5 does
provide a demonstration of the power of the bootstrap algorithm.

One of the problems with the above methodology is that the data is not continuous and is grouped
by month. A potential solution is to use what is referred to as the actuarial assumption. This assumes
that the losses to censorship occur uniformly over the month. We therefore adjust our value n; to n;

using the following transition
’ Cj
Gene Y an N g
1<j—1 1<j—1

Our maximum likelihood estimate for our survivor function is then defined as

Sm=1] <1 - f;)

gt <t J

So far we have assumed that the individuals within our study are independently identically distribu-
tions. However, we know this is not true. We could consider the case of an inhomogeneous population,
defined by a series of explanatory variables. For our data set these would be the characteristics of each
borrower, for example their age or employment status. Lyn Thomas [7, p.256] outlines how we might
apply the Cox’s Proportional Hazards model within the context of credit scoring, comparing this with
logistic regression models [16]. This falls beyond the scope of this project yet remains is an interesting
area of further research.

Chapter 6

Conclusion

6.1 Overview

We have demonstrated the power of the bootstrap methodology and some of its many applications within
the context of credit scoring. Bootstrapping was used to generate confidence intervals to compare score
cards and we have provided some indication of the advantages of such methods over the more conventional
Mann-Whitney U Statistic. In particular, the simplicity of the bootstrap algorithm was emphasised. Two
different methods to bootstrap AUC were considered, before concluding that the first method, where we
build just one model and test its performance on B bootstrapped test data sets, is more appropriate for
our purposes.

When comparing score cards we proposed a solution based on testing two different models on indepen-
dent, data sets, as shown in Figure 6.1. We divided this into two hypothesis tests, before demonstrating
some of the ways in which this methodology breaks down.

y — AUC,
/ /
Data Set — training
N\ hY
Z — AUCQ

Figure 6.1: Proposed methodology to compare score cards

We also explored four different methods to bootstrap AUC, before concluding that the percentile
bootstrap method is superior due to its invariance to transformations and its ability to adjust for corre-
lation between score cards built on the same data set. Another interesting application of the bootstrap
methodology is when estimating AUC in the case a limited data set.

The effect of the number of bootsamples on the estimate for the mean and standard error was also
explored. Furthermore, the time dependent element of the credit scoring data set was highlighted by
comparing the AUCs found by testing a model on the first and last quarter of the data set. This is known
as backtesting and forecasting, respectively. The corresponding ROC curves are shown in Figure 6.2.

We moved on to study how we might fit a first order auto regressive model to default rates, before
analysing two different bootstrapping methods. The first bootstrapping residuals and the second using
the block bootstrapping methods. We concluded by researching elements of survival analysis and how
we might bootstrap the Kaplan Meier curve within the context of credit scoring. A comparison between
the bootstrap estimate for the standard error and that obtained using Greenwood’s formula were found
to be relatively similar.

41

CHAPTER 6. CONCLUSION 42

Backtesting ROC Curve Forecasting ROC Curve

(=T |

@ _| @ _|
a (=] o o
o L
R £ o |
== o == o
@ @
o o
a a
@ | o |
SFE e = =
F =
L o | L oo ol

(=) o

(= (=

o o

T T T T T T T T T T T T
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
FO False positive rate FO False positive rate

Figure 6.2: AUC when backtesting is 0.7533052 but only 0.5664593 when forecasting.

6.2 Discussion

The presented report highlights just some of the different ways in which the algorithms were tested and
implemented. It was originally believed by the author that testing two different models on different
data sets could have provided an innovative solution to the problem of comparing two different models
AUC. It was only after the algorithms were implemented that the method broke down. This led to the
consideration of default rates.

Simulated data also was used prior to implementing a number of the algorithms. This has the
advantage that we can control the parameters and therefore compare the expected result with the actual
result. We started by considering an environment where

Vit =+ Bz +ve; + ki + &

Here o, 8 and +y are constants and y; ; is the time dependent probability of default. We define z; ~ N(0, 1),
e; ~ N(0,02%), ; ~ N(0,02), where o, and o. are some unknown standard deviations. The last term, &,
is the unknown error term and k; represents changes in the macro-economic environment.

We can find the expected value of y; ; as follows:

E(yit) = E(a+ Br;+vei + ke +e;) = a+ BE(x;) + vE(e;) + ke

Different functions for k; were considered, for example, a step function. This aimed to model a
situation where there is a sudden change in the macro-economic environment, such as the failure of a major
bank. This work provided the basis on which modeling default rates using a first-order autoregressive
process was based and prompted the study of block bootstrapping methods.

6.3 Further Work

Much more work is still to be done exploring the bootstrap methodology. With more time we could
fully develop some of the time dependent models. In particular, we could develop a Cox’s Proportional
Hazards model, for the case of an inhomogeneous population. It would also be interesting to implement
the Mann-Whitney U Statistic and compare the results obtained with that obtained using bootstrapping.

We might also like to build on some of the work relating to survival analysis. Whilst it is clear we
can model default rates using the Kaplan Meier estimate, it would be interesting to demonstrate some of
the reasons why this might be useful.

Chapter 7

Appendix

A selection of some of the more important R code is included below

list of all computing code used for this report.

7.1 One Sample Bootstrap algorithm

bootstrap <- function(x,B) {
bootreplications<-NULL
n=length(x)

stat = mean(x)
#Calculate the statistic of interest
cat ("Meanyof joriginal, sample=",stat,"\n")

for (i in 1:B) {
bootsample <- sample(x,replace="TRUE")
bootreplications[i] <- mean(bootsample)
}
meanbootstrap = mean(bootreplications)
cat ("Estimated bootstrap mean,=",meanbootstrap,"\n")
#Display the estimated mean for the statistic
varbootstrap = var(bootreplications)

#calculate the wvariance of the bootsirap replications

sebootstrap = sqrt(varbootstrap)

. This is by no means an exhaustive

#calculate the standard error of the bootstrap replications
cat ("Estimated bootstrap,standard,error,=",sebootstrap,"\n")

#Display the estimated standard error for the statistic

hist (bootreplications)
hist (x)

¥

x <- rnorm(25,0,1)

bootstrap (x,200)

7.2 Building a basic credit score card

x <- NULL

y <- NULL

ypl <- NULL

yp2 <- NULL

yp3 <- NULL

setwd("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata<-read.delim("ordered_data_cc_app.txt")

attach(ccdata)

ccdata$EMPLOY_STATUS_EM <- as.numeric ((EMPLOY_STATUS=="EM"))
ccdata$EMPLOY_STATUS_HO <- as.numeric ((EMPLOY_STATUS=="H0"))
ccdata$EMPLOY_STATUS_RE <- as.numeric ((EMPLOY_STATUS=="RE"))
ccdata$EMPLOY_STATUS_SE <- as.numeric ((EMPLOY_STATUS=="SE"))
ccdata$EMPLOY_STATUS_ST <- as.numeric ((EMPLOY_STATUS=="ST"))
ccdata$ TENURE_CT <- as.numeric ((TENURE=="CT"))

ccdata$ TENURE_HO <- as.numeric ((TENURE=="HO"))
ccdata$TENURE_LP <- as.numeric ((TENURE=="LP"))
ccdata$TENURE_PT <- as.numeric ((TENURE=="PT"))
ccdata$TENURE_B <- as.numeric ((TENURE==""))

ccdata$ APPLICATION _CHANNEL_C <- as.numeric ((APPLICATION_CHANNEL=="Cold Calls"))
ccdata$ APPLICATION _CHANNEL_I <- as.numeric ((APPLICATION_CHANNEL=="Internet"))
ccdata$ APPLICATION_CHANNEL_M <- as.numeric ((APPLICATION_CHANNEL=="Mail"))
ccdata$APPLICATION _CHANNEL_O0 <- as.numeric ((APPLICATION_CHANNEL=="Q0ther"))

ccdata$ageql <- as.numeric ((age<=26))
ccdata$ageq2 <- as.numeric ((26<age & age<=33))

43

CHAPTER 7. APPENDIX 44

ccdata$ageq3 <- as.numeric ((33<age & age<=35))
ccdata$ageq4 <- as.numeric ((35<age & age<=42))
ccdata$ageqb <- as.numeric ((42<age & age<=81))
ccdata$MONTHS _AT_ADDRESS1 <- as.numeric ((MONTHS_AT_ADDRESS <=24))
ccdata$MONTHS _AT_ADDRESS2 <- as.numeric ((24<MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS <=54))
ccdata$MONTHS _AT_ADDRESS3 <- as.numeric ((54<MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS<=91))
ccdata$MONTHS _AT_ADDRESS4 <- as.numeric ((91<MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS<=125))
ccdata$MONTHS _AT_ADDRESS5 <- as.numeric ((125<MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS<=780))
woe <- functiomn(x,y) {
nn<-y
ni<-y
woe<-y
for (i in 1:length(x)) {
nnlil<-sum(x==x[il)
ni[il<-sum(y* (x==x[i]))
if (n1[il==0) {
nn[il<-nn[i]+1
ni[i]<-1

}
if (ni1lil==nn[il) {
ni[il<-n1[i]-1

}
}
woe<-log ((nn-nl1)/nl)
woe

3
ccdata <- ccdata[MONTHS_AT_ADDRESS<428,]
Remove (utliers
leng<-length(t(ccdata))/length(ccdata)
len<-length(ccdata)
roc <- function(y, s) {
yav <- rep(tapply(y, s, mean), table(s))
rocx <- cumsum(yav)
rocy <- cumsum(l - yav)
area <- sum(yav * (rocy - 0.5 % (1 - yav)))
x1 <- ¢(0, rocx)/sum(y)
y1 <- ¢(0, rocy)/sum(l - y)
auc <- area/(sum(y) * sum(l - y))
print (auc)
}
roc_plot <- function(y, s) {
yav <- rep(tapply(y, s, mean), table(s))
rocx <- cumsum(yav)
rocy <- cumsum(l - yav)
area <- sum(yav * (rocy - 0.5 % (1 - yav)))
x1 <- ¢(0, rocx)/sum(y)
y1 <- c(0, rocy)/sum(l - y)

auc <- area/(sum(y) * sum(1 - y))
plot(xl,yl,"1", xlab ="FO,False,positiveyrate", ylab = "F1,True_positiveyrate")
title (main="ROC,Curve", xlab ="FO,False positiveyrate", ylab = "F1_,Trueypositiveyrate", font.main= 4)

H

detach(ccdata)

Building our general linear model

attach(ccdata)

nu<-sample (leng, floor(lengx.25), replace=FALSE)

cctest <- ccdatal[nu,]

cctrain <- ccdatal-nu,]

cctestback <- ccdatall:floor(lengx*.25),]

cctrainback <- ccdatal[(floor (leng*.25)+1):leng,]

cctestfor <- ccdata[(leng-floor(leng#*.25)+1):1leng,]

cctrainfor <- ccdatal[l:(leng-floor(leng+*.25)),]

detach(ccdata)

attach(cctrain)

glml.out <- glm(good ~ ageql + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS_AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_I +
APPLICATION_CHANNEL_M, family = binomial("logit"))

detach(cctrain)

attach(cctest)

ypl <- predict(glml.out, cctest, type="response")

OriginaldUC <- roc(good,ypl)

roc_plot (good,ypl)

detach(cctest)

summary (glml.out)

7.3 Bootstrapping Confidence Intervals

B = 1000

B2 = 200

Using the model in dppendiz 7.2.2 we generate four different confidence interweals
bootaucl <- NULL

bootauc2 <- NULL

CHAPTER 7. APPENDIX 45

Z<-vector ("numeric")
se<-vector ("numeric")
for (i in 1:B) {
attach(cctest)
nx<-sample (floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot <- cctest[nx,]
detach(cctest)
attach(cctestboot)
ypl <- predict(glml.out, cctestboot, type="response'")
bootaucl[i]l <- roc(good,ypl)
detach(cctestboot)
For bootstirap-t confidence intervals - create the second bootstrap layer
for(j in 1:B2) {
attach(cctestboot)
nxl<-sample (floor (leng*.25), floor(leng#*.25), replace=TRUE)
cctestboot2 <- cctestboot[nx1,]
detach(cctestboot)
attach(cctestboot?2)
yp2 <- predict(glml.out, cctestboot2, type="response")
bootauc2[jl <- roc(good,yp2)
detach(cctestboot2)
¥
se[i]l=sqrt (var (bootauc2))
Z[il<-(bootaucl[i]-0riginaldUC)/sel[il]

}

meanbootstrapl = mean(bootaucl)

#calculate the mean of the bootstrap replications

varbootstrapl = var(bootaucl)

#calculate the wvariance of the bootstrap replications

sebootstrapl = sqrt(varbootstrapl)

#calculate the standard error of the bootstrap replications

cat ("Estimated bootstrap,standard error, for,the model, =",sebootstrapl,"\n")
#Display the estimated standard error for the statistic

cat ("Mean,of ,the bootstrap,of the model,=", meanbootstrapl,"\n")

#Display the mean of the bootstrap replications

hist (bootaucl)

#tplot a histogram

stu <- qt(0.975,df=floor (leng*0.25)-1)

gaus<- qnorm(0.975)

#95] CI on the bootstrap

lowerl = OriginalAUC - stu * (sebootstrapl)

upperl = OriginalAUC + stu * (sebootstrapl)

cat ("95%_ upper student -t Confidence Interval, for the model, =",upperl,"\n")
cat ("95%,lower student -t ,Confidence _ Interval, for, the_ model, =",lowerl,"\n")
#95) CI on the bootstrap

lower2 = OriginalAUC - gaus * (sebootstrapl)

upper2 = OriginalAUC + gaus * (sebootstrapl)

cat ("95%_ upper Gaussian Normal,Confidence, Interval for the model_ =" ,upper2,"\n")
cat ("95%,lower Gaussian, Normal Confidence ,Interval, for, the, model, =",lower2,"\n")
(Confidence intervals using bootsirap-t

Z<-sort(Z)

k<-ceiling (0.025*(B+1))

t1<-Z[k]

t2<-Z[B+1-k]

upper3 = OriginalAUC - t1 * (sebootstrapl)

lower3 = OriginalAUC - t2 #* (sebootstrapl)

cat ("Lower sbootstrap-t,Confidence, Interval, for, the model, =",lower3,"\n")
cat ("Upper ,bootstrap-t, Confidence, Interval, for, the model, =",upper3,"\n")
Confidence intervals using percentiles

bootaucsort<-sort (bootaucl)

k<-ceiling (0.025*(B+1))

pl<-bootaucsort [k]

p2<-bootaucsort [B+1-k]

upper4 = p2

lower4 = pl

cat ("Lower percentile ConfidenceyInterval, for, the model,=",lower4,"\n")
cat ("Upper percentile Confidence,Interval, for,the model =" ,upper4,"\n")

7.4 Number of Bootsamples

K=1000
bootauc2 <- matrix(data=0,nrow=K,ncol=K)
bootmean<-NULL
bootse<-NULL
for (B in 1:K) {
bootaucl <- NULL
for (i in 1:B) {
attach(cctest)
nx<-sample (floor (leng*.25), floor(lengx.25), replace=TRUE)
cctestboot <- cctest[nx,]
detach(cctest)
attach(cctestboot)

CHAPTER 7. APPENDIX 46

ypl <- predict(glml.out, cctestboot, type="response")
bootaucl[i] <- roc(good,ypl) detach(cctestboot)
}
bootauc2[1:B,B] <- bootaucl
bootmean[B] <- mean(bootaucl)
bootse [B] <- sqrt(var(bootaucl))
¥
plot (bootmean,y,"1")
plot (bootse,y,"1")

7.5 Limited data set

sam <- sample(leng, 1000, replace=FALSE)
ccdata <- ccdatalsam,]
Reducing the data set size
leng<-length(t(ccdata))/length(ccdata)
len<-length(ccdata)
Hodel
attach(ccdata)
glml.out <- glm(good ~ ageql + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS_AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_I +
APPLICATION_CHANNEL_M, family = binomial("logit"))
ypl <- predict(glml.out, ccdata, type="response")
OriginaldUC <- roc(good,ypl)
roc_plot (good,ypl)
detach(ccdata)
B = 1000
bootaucl <- NULL
bootauc2 <- NULL
for (i in 1:B) {
attach(ccdata)
nx<-sample (leng, leng, replace=TRUE)
ccdataboot <- ccdatalnx,]
cctestboot <- ccdataboot[1:floor (leng#.25),]
cctrainboot <- ccdataboot[(floor (leng*.25)+1):1leng,]
detach(ccdata)
attach(cctrainboot)
glmiB.out <- glm(good ~ ageql + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS _AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_TI +
APPLICATION_CHANNEL_M, family = binomial("logit"))
yplB <- predict(glmiB.out, cctrainboot, type="response")
bootaucl[i] <- roc(good,yplB)
detach(cctrainboot)
attach(cctestboot)
yp2B <- predict(glmiB.out, cctestboot, type="response")
bootauc2[i]l <- roc(good,yp2B)
detach(cctestboot)
¥
sum=0
for(i in 1:B){
sum = sum + (1/B)*((1-1/exp(1))*bootauc2[il+ (1/exp(1))*bootaucil[il)
H
cat ("AUC for, the model when tested on itself, =",0riginalAUC,"\n")
cat ("Estimated bootstrapped AUC_ for the,model,=",sum,"\n")

7.6 Hypothesis test - distributional form

bootstrap.disform <- function(z,y,B){
meanz <- mean(z)

cat ("Mean,of joriginal, sample, from dataset, z,=",meanz,"\n")
meany <- mean(y)

cat ("Meanjof joriginal, sample, from_ dataset, y,=",meany,"\n")
x<-c(z,y)

stat <- meanz - meany

cat ("Statistic of interest for,the paired, dataset,=",stat,"\n")

m=length (z)
r=length (y)
bootreplications <- NULL
zstar <- NULL
ystar <- NULL
for(i in 1:B){
bootsample <- sample(x,replace="TRUE")
for(j in 1:m){
zstar[jl<-bootsample[j]
}
for(j in (m+1):(m+r)){
ystar[j-m]<-bootsample [j]
}

CHAPTER 7. APPENDIX

bootreplications[i] <- mean(zstar)-mean(ystar)
}
if(stat<0) stat<-stat#*-1
ASL <- NULL
for (i in 1:B){
if (stat>0) if(bootreplications[il>=stat) ASL[i]l<-1
if (stat>0) if(bootreplications[i]<stat) ASL[i]<-0
if (stat<=0) if(bootreplications[i]<=stat) ASL[i]<-1
if (stat<=0) if(bootreplications[il>stat) ASL[i]<-0
}
ASLboot = sum(ASL)/B
cat ("Achieved, SignificanceyLevel,=",ASLboot,"\n")
hist (bootreplications)
}
z <- rnorm(25,0.65,0.1)
y <- runif (25,0,1.4)
bootstrap.disform(z,y,1000)

7.7 Hypothesis test - significant difference

attach(ccdata)
nu<-sample (leng, floor(lengx.25), replace=FALSE)
cctest <- ccdatalnu,]
cctrain <- ccdatal-nu,]
detach(ccdata)
attach(cctrain)
glml.out <- glm(good ~ ageql + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO,
family = binomial("logit"))
glm2.out <- glm(good ~ TENURE_HO, family = binomial("logit"))
detach(cctrain)
attach(cctest)
ypl <- predict(glml.out, cctest, type="response")
yp2 <- predict(glm2.out, cctest, type="response")
ODriginalAUC1 <- roc(good,ypl)
OriginalAUC2 <- roc(good,yp2)
AUCdiff<-0OriginalAUC1 - OriginalAUC2
roc_plot (good,ypl)
roc_plot (good,yp2)
detach(cctest)
B = 1000
bootaucl <- NULL
bootauc2 <- NULL
bootaucdiff <- NULL
for (i in 1:B) {
attach(cctest)
nx<-sample (floor (leng#*.25), floor(leng#.25), replace=TRUE)
cctestboot <- cctest[nx,]
detach(cctest)
attach(cctestboot)
ypl <- predict(glml.out, cctestboot, type="response')
yp2 <- predict(glm2.out, cctestboot, type="response'")
bootaucl[i] <- roc(good,ypl)
bootauc2[i]l <- roc(good,yp2)
bootaucdiff[i] <- bootaucl[i]-bootauc2[i]
detach(cctestboot)

H

meanbootstrap = mean(bootaucdiff)

cat ("Mean,of ,the bootstrap,of differences,=", meanbootstrap,"\n")
cat ("AUC_ for_ model, 1,=", OriginalAUC1,"\n")

cat ("AUC_ for_ model, 2,=", OriginalAUC2,"\n")

cat ("AUC differencey=", AUCdiff,"\n")

hist (bootaucdiff ,main="Histogramy,of, the,difference, in, AUCs")

#plot a histogram

Confidence intervals using percentiles

bootaucsort<-sort (bootaucdiff)

k<-ceiling (0.025*(B+1))

pl<-bootaucsort [k]

p2<-bootaucsort [B+1-k]

upper4 = p2

lower4 = pl

cat ("Lower ,percentile_ Confidence,Interval, for,the model =" ,lower4,"\n")
cat ("Upper percentile Confidence,Interval for,the model =" ,upper4,"\n")

7.8 Hypothesis test - insignificant difference

attach(ccdata)

ccdata$ranm <- rnorm(leng,0,0.1)

Add’s an exztra random term to the data sampled from the Vormal (0,0.1) distribution
nu<-sample (leng, floor(lengx.25), replace=FALSE)

cctest <- ccdatalnu,]

47

CHAPTER 7. APPENDIX

cctrain <- ccdatal-nu,]
detach(ccdata)
attach(cctrain)

glml.out <- glm(good ~ ageql + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO,

family = binomial("logit"))

glm2.out <- glm(good ~ ageql + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO

+ ranm, family = binomial("logit"))
The second model 4is identical apart from the eztra random term
detach(cctrain)
attach(cctest)
ypl <- predict(glml.out, cctest, type="response")
yp2 <- predict(glm2.out, cctest, type="response")
OriginalAUC1 <- roc(good,ypl)
OriginalAUC2 <- roc(good,yp2)
AUCdiff<-0riginalAUC1 - OriginalAUC2
roc_plot (good,ypl)
roc_plot (good,yp2)
detach(cctest)
B = 1000
Build just one model with different style of confidence interwvals...
bootaucl <- NULL
bootauc2 <- NULL
bootaucdiff <- NULL
for (i im 1:B) {
attach(cctest)
nx<-sample (floor (leng#.25), floor(leng#.25), replace=TRUE)
cctestboot <- cctest[nx,]
detach(cctest)
attach(cctestboot)
ypl <- predict(glml.out, cctestboot, type="response")
yp2 <- predict(glm2.out, cctestboot, type="response')
bootaucl[i] <- roc(good,ypl)
bootauc2[i] <- roc(good,yp2)
bootaucdiff [1] <- bootaucl[il-bootauc2[i]
detach(cctestboot)

H

meanbootstrap = mean(bootaucdiff)

cat ("Mean, of ,the bootstrap,of differences,=", meanbootstrap,"\n")
cat ("AUC, for, model, 1,=", OriginalAUC1,"\n")

cat ("AUC, for model, 2,=", OriginaldAUC2,"\n")

cat ("AUC_ difference,=", AUCdiff,"\n")

hist (bootaucdiff ,main="Histogramyof, the, difference in AUCs")
bootaucsort<-sort(bootaucdiff)

k<-ceiling (0.025%(B+1))

pl<-bootaucsort [k]

p2<-bootaucsort [B+1-k]

upper4 = p2

lower4 = pil

cat ("Lower ,percentile Confidence,Interval for,the model =" ,lower4,"\n")
cat ("Upper percentile ConfidenceyInterval, for, the ymodel, =" ,upper4,"\n")

7.9 Generating an AR(1) model

Y <- NULL
Y[11 = 0
for(i in 2:50){

Y[i] <- 0.8%Y[i-1]+rnorm(1,0,0.1)
3
ar (Y, order .max=1)
acf(Y,main="Autocorrelation, function")

7.10 Bootstrapping residuals

residualboot <- function(Y) {
n=length (Y)
ybar <- mean(Y)
X <- NULL
for(i in 1:n){
X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){
z[i-1] <- X[i]
}
for (i in 1:(mn-1)){
Z[i]l <- X[il
}
phi_hat <- solve (t(Z)%*%Z)*t (Z)%*%z
ep <- NULL

48

CHAPTER 7. APPENDIX

for(i in 2:n){
ep[i-1] <- X[i] - phi_hat*X[i-1]
¥
B=1000
phiboot <- NULL leng<-length(ep) epboot <- NULL
for(i in 1:B){
X[1] <- Y[1] - ybar
nu <- sample(leng,leng,replace=TRUE)
epboot <- eplnul
for(j in 2:m){
X[jl <- phi_hat*X[j-1]1 + epboot[j-1]
}
Z<-NULL
z<-NULL
for(j in 2:m){
z[j-11 <- X[j]
}
for(j in 1:(n-1)){
zZ[j1 <- X[j]

}

phiboot [i] <- solve (t(Z)%*%hZ)*t (Z)%*%z
¥
hist (phiboot)
meanbootstrap = mean(phiboot)

var (phiboot)

sebootstrap = sqrt(var(phiboot))

phi_hat

cat ("Estimated_ bootstrap, standard error,=",sebootstrap,"\n")

cat ("Mean,of ,the bootstrap,for,phihat, =" ,meanbootstrap,"\n")

Confidence intervals using percentiles

phisort<-sort (phiboot)

k<-ceiling (0.025*(B+1))

pl<-phisort[k]

p2<-phisort [B+1-k]

upper = p2

lower = pl

cat ("Lower percentile Confidence Interval, for,theymodel,=",lower,"\n")
cat ("Upper percentile_ Confidence, Interval, for,the model, =" ,upper,"\n")

7.11 Moving block bootstrap

bootstrap.movingblock <- function(Y,B,1){
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for (i in 1:m){
X[i] <- Y[i]-ybar
¥
Find my residuals
Z<-NULL
z<-NULL
for(i in 2:n){
z[i-1] <- X[i]
3
for (i in 1:(mn-1)){
Z[i]l <- X[il
¥
phi_hat <- solve (t(Z)%*%Z)*t (Z)%*%z
cat ("Estimate for phiyfrom,the, original,sample=",phi_hat,"\n")
k = floor(n/1)
for (i in 1:B) {
startpt=sample (1:(n-1+1) ,k,replace="TRUE")
for (j im 1:k) {
blockbootsample [((j-1)*1+1):(j*1)] = Y[(startpt[jl):(startpt[jI+1-1)]
}
X <- NULL
for(p in 1:(kx*1)){
X[p] <- blockbootsample[p]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:(k*1)){
z[q-11 <- X[ql
}
for(q in 1:(k*1-1)){
Z[ql <- X[ql
}
bootreplications[i] <- solve (t(Z)%*%Z)*xt(Z)%*%hz

49

CHAPTER 7. APPENDIX

}
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)

sebootstrap = sqrt(varbootstrap)*sqrt(k*1/mn)

#calculate the standard error of the bootstrap replications
cat ("Estimated bootstrap,standard error,=",sebootstrap,"\n")

#Display the estimated standard error for the statistic

cat ("Meanyof sthe bootstrap,for phihat,=",meanbootstrap,"\n")

#Display the mean of the bootstrap difference of means
hist (bootreplications, main="Moving,Block,Bootstrap")
Confidence intervals using percentiles
phisort<-sort (bootreplications)

ku<-ceiling (0.025%(B+1))

pl<-phisort [kul

p2<-phisort [B+1-kul

upper = p2
lower = pl
cat ("Lower percentile Confidence Interval, for,theymodel,=",lower,"\n")
cat ("Upper percentile_ Confidence, Interval, for,the model, =" ,upper,"\n")

}
bootstrap.movingblock(Y,1000,5)

7.12 Non-overlapping block bootstrap

bootstrap.nonoverlapping <- function(Y,B,1) {

bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
}
for(i in 1:(n-1)){

Z[il <- X[i]

¥
phi_hat <- solve (t(Z)%*%Z)*t (Z)%*%z
cat ("Estimate for,phiyfrom,the, original,sample=",phi_hat,"\n")

k = floor(n/1)
startpt <- NULL
for (i in 1:B) {
Q <- c(1:(kx1))
for(g in 1:k){
startpt[g]l = QL((g-1)*1+1)]
}
startptrand=sample(startpt ,k,replace="TRUE")
for (j in 1:k) {

50

blockbootsample [((j-1)*1+1):(j*1)] = Y[(startptrand[jl):(startptrand[jI+1-1)]

}

X <- NULL

for(p in 1:(k*1)){
X[pl <- blockbootsample [p]-ybar

}

Z<-NULL

z<-NULL

for(q in 2:(k*1)){
z[q-11 <- X[ql

}

for(q in 1:(k*1-1)){
Z[q]l <- X[ql

}
bootreplications[i]l <- solve (t(Z)%*%UZ)*t (Z)%*'%z
}
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)*sqrt(k*1/mn)
cat ("Estimated bootstrap,standard,error,=",sebootstrap,"\n")
cat ("Mean,of ,the bootstrap,for,phihat, =" ,meanbootstrap,"\n")

hist (bootreplications, main="Non-overlapping,Block,Bootstrap")
phisort<-sort (bootreplications)

ku<-ceiling (0.025%(B+1))

pl<-phisort [kul

p2<-phisort [B+1-kul

upper = p2

lower = pl

cat ("Lower percentile_ Confidence Interval, for,the model, =" ,lower,"\n")

CHAPTER 7. APPENDIX

cat ("Upper percentile, Confidence, Interval, for,the model, =" ,upper,"\n")
3
bootstrap.nonoverlapping(Y,1000,5)

7.13 Circular block bootstrap

bootstrap.circular <- function(Y,B,1) {
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for (i in 1:m){
X[i]l <- Y[il-ybar
}
Z<-NULL
z<-NULL
for (i in 2:m){
z[i-1] <- X[il]
¥
for(i in 1:(n-1)){
Z[i]l <- X[il
}
phi_hat <- solve (t(Z)%*%Z)*t (Z)%*%z
cat ("Estimate foryphiyfromythe original, sample=",phi_hat,"\n")
k = floor(n/1)
Y <- c(Y,Y)
for (i in 1:B) {
startpt=sample(l1:n,k,replace="TRUE")
for (j in 1:k) {
blockbootsample [((j-1)*1+1):(j*1)] = Y[(startpt[j]):(startpt[jl+1-1)]
}
X <- NULL
for(p in 1:(kx*1)){
X[p] <- blockbootsample[p]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:(kx*1)){
z[q-1] <- X[q]
}
for(q in 1:(k*1-1)){
Z[ql <- XI[ql

}
bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z
3
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)*sqrt(k*1/m)
cat ("Estimated bootstrap, standard error,=",sebootstrap,"\n")
cat ("Mean,of ,the bootstrap,for,phihat, =" ,meanbootstrap,"\n")

hist (bootreplications, main="Circular_ Block, Bootstrap")
phisort<-sort (bootreplications)

ku<-ceiling (0.025%(B+1))

pl<-phisort [ku]

p2<-phisort [B+1-kul

upper = p2
lower = pl
cat ("Lower percentile Confidence Interval, for,the model,=",lower,"\n")
cat ("Upper percentile Confidence Interval for, the ymodel,=",upper,"\n")

3
bootstrap.circular (Y,1000,5)

7.14 Stationary block bootstrap

bootstrap.stationary <- function(Y,B,p){

bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-11 <- X[i]

o1

CHAPTER 7. APPENDIX

}

for(i in 1:(n-
Z[i] <

}

14
- X[il

phi_hat <- solve (t(Z)%*%Z)*t (Z)%*%z
cat ("Estimate for phiyfrom,the original,sample=",phi_hat,"\n")

Y <- c(Y,Y)
for (i in 1:B)

blockbootsample <-

len =

while (len<n){

}

len =
X <- N

{

0

Q <-
L <-
if (L
if (L
if (L
if (L
if (L
if (L
if (L
if (L
if (L
if (L
if (L
if (L

NULL
c(l:n)
rgeom(1,p)
== 0) L <-
== (0) L <-
== 0) L <-
== 0) L <-
== 0) L <-
>n) L <-
> n) L <-
> n) L <-
> n) L <-
> n) L <-
>n) L <-
> n) L <-

to ensure L
startpt =

extra <-

rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
rgeom(1,p)
is between 0 and =

sample (Q,1)

NULL

extra <- Y[(startpt):(startpt+L-1)]
blockbootsample <- c(blockbootsample,extra)
len = length(blockbootsample)

length(blockbootsample)

ULL

for(q in 1:1len){
X[q] <- blockbootsample[q]-ybar

}
Z<-NUL
z<-NUL

L
L

for(q in 2:1en){
z[q-1] <- X[q]

}

for(q in 1:(len-1)){
Z[ql <- XI[ql

}

bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z

}
meanbootstrap
varbootstrap =
sebootstrap =

hist (bootreplications,

= mean(bootreplications)
var (bootreplications)
sqrt (varbootstrap)

cat ("Estimated bootstrap, standard error, =" ,sebootstrap,"\n")

cat ("Meanjof j;the bootstrap,for, phihat,=",meanbootstrap,"\n")

phisort<-sort (bootreplications)
ku<-ceiling (0.025%(B+1))

pl<-phisort [ku
p2<-phisort [B+
upper = p2
lower = pl

]
1-%kul

main="Stationary_ ,Block, Bootstrap")

cat ("Lower percentile Confidence Interval, for,the model,=",lower,"\n")

cat ("Upper percentile ConfidenceyInterval for,theymodel,

}

bootstrap.stationary(Y,1000,0.2)

7.15 Greenwood’s formula

KapMeier <- function(t

)1

setwd("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata<-read.delim("ordered_data_cc_app.txt")

library (surviv
attach(ccdata)

al)

vec <- cbind(stmt_rel_mth,1-good)

N <- NULL
D <- NULL

n <- length(stmt_rel_mth)

for (j in 1:40)
value
sum =
for (i

{
=0
0

in 1:n)

{

if (stmt_rel_mth[i]<j) sum=1 else sum=0
= sum + value

value

,upper,"\n")

52

CHAPTER 7. APPENDIX

N[jl <- n - value

}
for(j in 1:41){
value = 0
sum = O
for (i in 1:m){
if (stmt_rel_mth[i]<j) sum=1 else sum=0
if (good[i]<1) sum=sum#*1 else sum=sum#*0
value = sum + value
}
D[j]l <- value
}

for(i in 1:41){
D[il <- DIL[i+1]

}

D[41] <- O

D

sum = 0

for (j in 2:39)1{
sum = sum + D[j]
D[j+1] <- D[j+1] - sum

¥

product=1

for(i in 1:t){
product<-product*(1-(D[i]1/N[il))

}

S<-product

#t#Greenwoods forumla
sum = 0O
for(i in 1:t){
sum = sum + (D[i]/(N[il*(N[i]-D[i])))
3
Green <- S*sqrt(sum)
cat ("S-hat,=",S,"\n")
cat ("Greenwood ’>s,Standard Error,=",Green,'"\n")
detach(ccdata)

7.16 Bootstrapping the Kaplan Meier Curve

BootKapMeier <- function(t,B){
setwd ("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata<-read.delim("ordered_data_cc_app.txt")
attach(ccdata)
vec <- data.frame(stmt_rel_mth,l-good,good)
n <- length(stmt_rel_mth)
Sboot <-NULL
detach(ccdata)
for (b in 1:B){
nu<-sample(n, n, replace=TRUE)
vecstar <- vec[nu,]
attach(vecstar)

N <- NULL

D <- NULL

for(j in 1:40){
value = 0
sum = 0O

for(i in 1:n){
if (stmt_rel_mth[il<j) sum=1 else sum=0

value = sum + value
}
N[jl <- n - value
}
for (j in 1:41){
value = 0
sum = 0
for(i in 1:n){
if (stmt_rel_mth[il<j) sum=1 else sum=0
if (good[i]<1) sum=sum#*1 else sum=sum*0
value = sum + value
}
D[j]l <- value
}

for(i in 1:41){
D[i] <- D[i+1]

}

D[41]1 <- 0
D

sum = 0

for(j in 2:39){
sum = sum + D[j]

93

CHAPTER 7. APPENDIX

DL[j+1] <- D[j+1] - sum
}
product=1
for(i in 1:t){
product<-product*(1-(D[i]1/N[il))
}
Sboot [b]<-product
detach(vecstar)
}
SE<-sqrt (var (Sboot))
cat ("Bootstrap,Standard Error,=",SE,"\n")

54

Chapter 8

References

10.

11.

12.

13.

14.

15.

16.

Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. London. Chapham &
Hall; 1993.

Humberto Barreto, Frank M. Howland. Introductory Econometrics: Using Monte Carlo Simulation
with Microsoft Excel. Cambridge University Press.

. The Stationary Bootstrap Dimitris N. Politis and Joseph P. Romano Journal of the American

Statistical Association , Vol. 89, No. 428 (Dec., 1994), pp. 1303-1313

. Shorack, G.R.; Wellner, J.A. (1986). Empirical processes with applications to statistics. New York:

Wiley.

Stephen M. S. Lee and P. Y. Lai. Double block bootstrap confidence intervals for dependent data.
Biometrika (2009) 96 (2): 427-443. doi: 10.1093/biomet/asp018

. Molodianovitch, K., Faraggi, D. and Reiser, B. (2006), Comparing the Areas Under Two Corre-

lated ROC Curves: Parametric and Non-Parametric Approaches. Biom. J., 48: 745-757. doi:
10.1002/bimj.200610223

Lyn C. Thomas. Consumer Credit Models. Oxford University Press - Special; 2009.

. Bernd Engelmann. XII Measures of a Rating’s Discriminative Power - Applications and Limina-
g g

tions. The Basel IT Risk Parameters, Pages 263-287. Springer; 2006.

. Hana Skalska and Vaclav Freylich. Web-Bootstrap Estimate of Area Under ROC Curve. AUS-

TRIAN JOURNAL OF STATISTICS Volume 35 (2006), Number 2&3, 325-330.

Elizabeth R. DeLong, David M. DeLong, Daniel L. Clarke-Pearson. Comparing the Areas under
Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach.
Biometrics, Vol. 44, No. 3 (Sep., 1988), pp. 837-845

Jun Shao and Dongsheng Tu. The Jackknife and Bootstrap. Springer Series in Statistics. 1995.

B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals, and
Other Measures of Statistical Accuracy. Statistical Science. 1986. Vol. 1, 54-77.

Michael R. Chernick. Bootstrap Methods A Guide for Practitioners and Researchers. Second
Edition. Wiley.

James D. Hamilton. Times Series Analysis. Princeton University Press. 1994.

Michael G. Akritas. Bootstrapping the Kaplan-Meier Estimator. Journal of the American Statis-
tical Association , Vol. 81, No. 396 (Dec., 1986), pp. 1032-1038

D. R. Cox. Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B
(Methodological) , Vol. 34, No. 2 (1972), pp. 187-220

55

CHAPTER 8. REFERENCES 56

17. J. D. Kalbfleisch, Ross L. Prentice. The statistical analysis of failure time data. Wiley, New York.
1980

18. Bradley Efron. Censored Data and the Bootstrap. Journal of the American Statistical Association
, Vol. 76, No. 374 (Jun., 1981), pp. 312-319

