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Abstract

The bootstrap method provides a way to measure the accuracy of a sample statistic. For example, it
allows us to estimate the variance of a particular statistic such as the mean. The speci�c aim of this paper
is to demonstrate some ways in which bootstrapping can be applied to credit scoring. We present the
bootstrap method as a way to compute con�dence intervals on the di�erence between score cards, citing
this as an alternative to the Mann-Whitney U Statistic. We also demonstrate how it might be useful in
the case of a limited data set, before considering default rates within a homogeneous population. We
compare block bootstrapping methods with bootstrapping residuals within the context of a �rst-order
autoregressive model and show how we might bootstrap the Kaplan Meier estimate and compare the
standard error result with that obtained by using Greenwood's formula.
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Chapter 1

Introduction

1.1 Background Explanation

�Statistics is the science of learning from experience, especially experience that arrives a little bit at a
time� [1, p.1]. The term bootstrap derives from the phrase �to pull oneself up by one's bootstrap� from
the Adventures of Baron Munchausen by Rudolf Erich Raspe, �The Baron had fallen to the bottom of
a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps�
[1, p.5]. When you pull yourself up by your own bootstraps, you succeed on your own, despite limited
resources [2, p.709].

Bootstrapping is a computer-based method for assigning an accuracy measure to statistical estimates
[1, p.10]. They allow us to estimate sampling distributions and their characteristics, in particular, it
enables us to estimate the variance of a statistic and therefore allows us to construct con�dence intervals
and hypothesis tests. We often apply them when the distribution of the population is unknown or when
we have limited data sampled from said population.

Credit scoring provides a systematic means by which banks and other �nancial institutions gather
information about borrowers or applicants for loans regarding their creditworthiness. In credit scoring
we normally deal with large data sets, with a relatively small number of defaults, taken from an unknown
distribution.

Much work has been done on building consumer credit score cards. However, little work has been
done on how to apply the bootstrap algorithm in the context of credit scoring with the particular aim of
comparing score cards. Further, what has not been researched in any particular scope, is whether it is
possible to apply time dependent block bootstrapping techniques to model consumer credit default rates.

We shall begin by introducing the methods used to build credit score cards and how we might de-
termine the performance of a particular score card. We demonstrate how bootstrapping can be used
when a data set is of a limited size and then describe how we might apply the bootstrap methodology to
place con�dence intervals on the relative di�erence between score cards. Finally we consider time indexed
data and demonstrate how macroeconomic pressures are likely to have an e�ect on the relative credit
worthiness of an individual, before critically analysing time dependent, block bootstrapping techniques
and elements of survival analysis.

1.2 Building a score card

Logistic regression is the most commonly used method for building scorecards [7, p.79]. Throughout this
paper we shall suppose we have an overall data set of N points. We suppose our data set is of the form
(qi, ri) for i = 1, 2, ..., N , where qi = (qi1, q

i
2, ..., q

i
m) are the characteristics of each borrower (e.g. income,

age etc.) and

ri =

{
1 if good

0 if bad

Here, good corresponds to a borrower who does not default and bad corresponds to a borrower who
defaults. This is divided into two independent data sets, which we refer to as training and test. For

6



CHAPTER 1. INTRODUCTION 7

the purposes of our introductory explanation we suppose the method used to divide these data sets is of
limited importance. We build our model on the training data set and assess its e�ectiveness using the
test data set. If we suppose our training data set is of size l and our test data set is of size n, then N is
such that N = l+ n. Without loss of generality, the data sets are relabelled such that our training set is
of the form (qj , rj) for j = 1, 2, ..., l and our test data set is of the form (qk, rk) for k = l+1, l+2, ..., l+n.

Dealing just with our training data set, we de�ne Pr{good|data q} = p(G|q) = p(q) and Pr{bad|data q} =
p(B|q), such that p(G|q) + p(B|q) = 1. The log odds score, score(q), is then de�ned such that [7, p.79]

score(q) = log

(
p(G|q)

p(B|q)

)
= log

(
p(q)

1− p(q)

)
= c · q

⇒ p(q) =
escore(q)

1 + escore(q)
=

ec·q

1 + ec·q

Maximum likelihood estimation is then used to �nd estimates ĉ of the parameters c, where we de�ne

L(c) =

l∏
j=1

(
ec·q

j

1 + ec·qj

)rj (
1

1 + ec·qj

)(1−rj)

Which is equivalent to maximising

log(L(c)) =

l∑
j=1

rj log

(
ec·q

j

1 + ec·qj

)
+

l∑
j=1

(1− rj)
(

1

1 + ec·qj

)
(1.1)

Di�erentiating (1.1) and setting its derivatives equal to 0, implies that maximisation occurs when

l∑
j=1

(
rj −

(
ec·q

j

1 + ec·qj

))
= 0

and for i = 1, ...,m
l∑

j=1

qji

(
rj −

(
ec·q

j

1 + ec·qj

))
= 0

These are solved numerically, allowing us to generate a general linear model. For subsequent chapters
we shall denote our test data set as x = (x1, ..., xn) where xi corresponds to (ql+i, rl+i).

1.2.1 Assessing the quality of a scorecard

Having built a scorecard we might now wish to assess its quality. The most widely used discrimination
measures are generated from the Receiver Operating Characteristic (ROC) curve [7, p.101]. The ROC
curve originated from estimating the errors in transmitting and receiving messages, however can be applied
in the context of credit scoring. A cut-o� value c, provides a simple decision rule to classify people as
potential defaulters and potential non-defaulters. Any individual with a credit score lower than c are
treated as defaulters (bad) while all individuals with a score higher than c are treated as non-defaulters
(good) [8, p.146]. Under this decision rule, four scenarios can occur, which are summarised in Table 1.1.
We refer to this as a Confusion Matrix.

Actual non-default Actual default
Predicted non-default Speci�city Type II error
Predicted default Type I error Sensitivity

Table 1.1: Confusion Matrix

The ROC curve shows the trade-o� between the true positive rate and the true negative rate. More,
precisely it is a plot of the sensitivity, de�ned as F (s|G) = Pr{score ≤ s|G}, versus 1-speci�city, de�ned
as F (s|B) = Pr{score ≤ s|B} over all possible values of s [6, p745].
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Figure 1.1: ROC Curves for two di�erent score cards

A score card with perfect discrimination would be such that all the bad individuals have scores less
than c and all the good individuals have scores above c. In this case F (c|G) = 0 and F (c|B) = 1 and our
curve would consist of a vertical line from (0, 0) to (0, 1) and a horizontal line from (0, 1) to (1, 1). By
comparison a score card with no discriminatory power would be such that F (c|G) = F (c|B) and would
consist of a diagonal line from (0, 0) to (1, 1).

Intuitively therefore, the closer the curve is to the point (0, 1), the better the discriminatory power of
the scorecard. We formalise this intuition by considering the area under the ROC curve, (referred to as
AUROC or AUC), where the larger this value the �better� the discrimination is.

Mathematically, we de�ne AUC as [7, p.117]

AUC =

ˆ
F (s|B)dF (s|G) =

ˆ
F (s|B)f(s|G)ds

Since AUC takes values between 1/2 and 1, we could instead use the Gini coe�cient as a measure
of the discrimination, where we de�ne Gini = 2 · AUC − 1. The Gini coe�cient therefore takes values
between 0 and 1, where 0 corresponds to a model which is no better than random and 1 corresponds to
a model which has perfect discriminatory power [7, p.117].

However, we should note that lenders are normally anxious to accept a large number of people for
credit and therefore cut-o� scores are normally taken from the lower end of the graph [7, p.125]. As a
result there is a case to be made that the AUC places too much emphasis on larger scores than might be
considered optimal. In spite of this, AUC remains the most widely used measure of the discrimination of
a score card, and thus will form the basis of our study.

1.3 Comparing score cards

In Figure 1.1 we can see two di�erent ROC curves. The left uppermost curve has a higher true positive
rate for all cut-o� values c. Therefore, we might conclude that this score card is better than the original
score card. However, to fully justify rejecting one score card in favour of another we may wish to
place con�dence intervals on the AUCs generated for each score card. Conventional techniques to place
con�dence internals on a statistic require us to calculate the standard error. However, there exists no
closed explicit method to estimate the standard error for the performance of a general linear model. It
is with the aim of comparing the performance of score cards that we study the bootstrap methodology.
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1.4 Time dependent data

Having explored how bootstrap methods can be used to directly compare score cards, we then wish to add
an extra dimension to our analysis by considering time dependent data. It might be considered intuitively
obvious that consumer credit data has a time dependent element. During a recession, macroeconomic
pressures mean that it is likely that default rates are higher than during a high growth period.

A consumer credit card data set, consisting of 4635 individuals, will form the basis of our research.
This data set is time indexed. If we consider the month the account was opened as a time stamp, where
month one corresponds to January 2008, we can see in Figure 1.2 that there were low default rates for
accounts opened in the earlier months, with spikes in the default rate for accounts that were opened
around month �fteen, corresponding to April 2009.

Figure 1.2: Relative number of defaults per month

We shall consider whether it is possible to �t a �rst order autoregressive model to default rates before
critically analysing some of the methods we can use to apply bootstrapping to assess the accuracy of
such a method. Underpinning such theory is the assumption that individuals within the population are
homogeneous. However, we know this is not the case. Di�erent groups of people are likely to have
di�erent associated default rates, which forms the basis of the credit scoring methodology. In spite of this
we will consider the assumption of a homogeneous population. We are also faced with the problem of
accounts being closed prematurely. This is known as right-censoring. Subsequently elements of survival
analysis will be considered to deal with the speci�c issue of right-censored data.



Chapter 2

Bootstrapping

2.1 Introduction

When discussing the concept of bootstrapping, it is important to distinguish between the parametric
and non-parametric bootstrap. For the parametric bootstrap, we make some assumptions about the
distributional form. By comparison, for the non-parametric bootstrap estimate we make no distributional
assumptions and instead employ the empirical distribution. This has the advantage of allowing us to
obtain standard errors, however complicated the estimator. The non-parametric bootstrap methodology
will therefore form the basis of our research.

2.2 Non-parametric Bootstrap

We begin by considering a simple problem. Suppose we have a random sample x = (x1, x2, . . . xn) from
some unknown probability distribution F and we wish to estimate a parameter of interest θ on the basis of
x. For this purpose we calculate an estimate θ̂ = s(x) from x, where s(·) denotes our statistic of interest.
For example, if we suppose θ is the mean then we take s(x) as the sample mean x̄. We now ask the

question, how accurate is our estimate θ̂? The non-parametric bootstrap provides a method to estimate
the standard error of θ̂ without making any prior theoretical assumptions. We denote the standard error
of θ̂ as seF (θ̂) [1, p.40].

If we denote F̂ as the empirical distribution de�ned as [4, p.1]

F̂ (t) =
number of elements in the sample ≤ t

n
=

1

n

n∑
i=1

I(xi ≤ t)

A bootstrap sample is then de�ned to be a random sample of size n drawn from F̂ . This is denoted
as x∗ = (x∗1, ..., x

∗
n). Each bootstrap sample is equivalent to drawing with replacement a random sample

of size n from the population of n data points (x1, ..., xn).

Correspondingly we �nd the bootstrap replication of θ̂ as

θ̂∗ = s(x∗)

where the quantity s(x∗) is the result of applying the same function s(·) to x∗ as was applied to x. The

bootstrap estimate of seF (θ̂), is a plug-in estimate that uses the empirical distribution function F̂ in

place of the unknown distribution F . We therefore estimate seF (θ̂) using seF̂ (θ̂∗), which we refer to as
the ideal bootstrap estimate. This process is repeated a large number of times to provide a good numerical
approximation of the value of seF̂ (θ̂∗). A diagrammatic demonstration of the method is given in Figure
2.1.

2.2.1 Non-parametric bootstrap algorithm

The above is an outline of what is referred to as the One-Sample Problem. Our random sample x is
drawn from one unknown probability distribution F . We will later consider the Two-Sample problem

10
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Bootstrap World

x∗1 = (x∗1, ..., x
∗
n) → θ̂∗(1) = s(x∗1)

↗

F̂
...

...
...

↘
x∗B = (x∗1, ..., x

∗
n) → θ̂∗(B) = s(x∗1)


→ ŝeB =

(∑B
b=1{θ̂∗(b)−θ̂∗(·)}2

B−1

) 1
2

⇑

Real World

F → x = (x1, ..., xn) → θ̂ = s(x)

Figure 2.1: Visualisation of the bootstrap process for estimating the standard error of a statistic s(x).

which deals with two mutually independent random samples drawn from two probability distributions.
We summarise the above with the following algorithm:

1. Select B independent bootstrap samples x∗1,x
∗
2, ...,x

∗
B, each consisting of n data points drawn with

replacement from the observed data set x = (x1, ..., xn).

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

θ̂∗(b) = s(x∗b) for b = 1, 2, ..., B

3. Estimate the standard error seF (θ̂) by the sample standard deviation of the B replications

ŝeB =


∑B
b=1

{
θ̂∗(b)− θ̂∗(·)

}2

B − 1


1
2

where θ̂∗(·) = 1
B

∑B
b=1 θ̂

∗(b)

We can see that limB→∞ ŝeB = seF̂ = seF̂ (θ̂∗). This is equivalent to noting that as B →∞ the empirical
standard deviation approaches the population standard deviation.

2.2.2 Example

Having described the algorithm that allows us to implement the non-parametric bootstrap, we shall now
demonstrate the power of this technique. In Table 2.1 we have credit scores for 25 individuals. If we
suppose that the population distribution is unknown, we can estimate the standard error of the mean of
these scores using the bootstrap algorithm and compare this to theoretical result.

0.75311889 0.90697848 0.79900132 -0.81674408 0.70691348
-0.66770845 -0.04024196 0.85663310 0.70299466 1.38542186
0.72114495 -0.60780066 0.29926675 -1.20001968 0.51914446
-0.46625055 1.31689987 -0.99389013 0.20462409 -1.57084974
-1.22438156 1.62587981 -0.40231527 1.15071131 -0.35977559

Table 2.1: Credit scores for the 25 individuals

The sample mean of this data is given as 0.1439502. For 200 bootsamples the standard error is
estimated as 0.1753753. [Appendix 7.1]
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Figure 2.2: Histogram of the 200 bootstrap replications of the mean credit score

We can also estimate the standard error by applying the central limit theorem. If we have data points
X1, ..., Xn, independently identically distributed, then

1
n

∑n
i=1Xi − µ
σ/
√
n

=
X̄ − µ
σ/
√
n
→ N(0, 1) as n→∞

Hence X̄ → N(µ, σ
2

n ) and therefore, we can estimate the standard error of the sample mean as σ√
n
.

In actual fact the 25 data points were sampled from a N(0, 1) distribution and therefore we can
calculate the standard error as 1√

25
= 0.2. We can see that our bootstrap estimate of the standard error

is close to the theoretical value, yet was calculated without having to make any theoretical assumptions.
This is particularly useful in the context of credit scoring, where we cannot guarantee that individuals
within a given data set are independently identically distributed.

2.2.3 How large to make B

In the above algorithm the number of bootsamples is de�ned as B. The ideal bootstrap estimate ŝe∞
takes B = ∞, in which case ŝe∞ equals the plug-in estimate seF̂ (θ̂∗). However, for most practical
purposes, excluding the calculation of con�dence intervals, a value of B = 200 will su�ce. For the
speci�c case of calculating con�dence intervals Efron [1, p.52] recommends a value of B = 1000 or more.
This is important to ensure that the bootstrap replications approximately take the expected distributional
form, which is especially important when calculating con�dence intervals using the percentile con�dence
interval method. We shall explore this in more detail in the following Section.

2.3 Bootstrapping Con�dence Intervals

We now turn our attention to the problem of bootstrapping con�dence intervals. This shall form the
basis of our study, in particular when comparing credit score cards. We start by considering how we
might place con�dence intervals on one isolated statistic.

2.3.1 Introduction

Suppose we are in the one-sample situation where the data x is obtained by random sampling from some
unknown distribution F . Let θ̂ be our estimate of some statistic of interest θ and let ŝe be our estimate
of the standard error for θ̂. Under the central limit theorem θ̂ ∼ N(θ, ŝe2) or equivalently

Z =
θ̂ − θ
ŝe
∼ N(0, 1) (2.1)
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Therefore, as n → ∞ if we let z(α) indicate the 100 · αth percentile point of a N(0, 1) distribution,
con�dence intervals for θ are obtained as [1, p.158][

θ̂ − z(1−α)ŝe, θ̂ − z(α)ŝe
]

Alternatively we can write our con�dence intervals as θ̂ ± z(1−α) · ŝe.
The above methodology, however, is only valid as n→∞. More generally, for �nite samples, we use

the Student's t distribution [1, p.158].

2.3.2 Student's t interval

Here we say that for a sample of size n

Z =
θ̂ − θ
ŝe
∼ tn−1

where tn−1 denotes the student's t distribution with n− 1 degrees of freedom. If we let t
(α)
n−1 indicate the

100 · αth percentile point of tn−1 then using this approximation con�dence intervals are obtained as[
θ̂ − t(1−α)

n−1 · ŝe, θ̂ + t
(α)
n−1 · ŝe

]
We can demonstrate how we might bootstrap con�dence intervals using the student's t method as

follows. If we take the 25 data points generated from a N(0, 1), as in our one-sample problem in Section

2.2.2, our mean is given as θ̂ = 0.1439502 with standard error ŝe = 0.1753753. Using the Student's
t distribution with n − 1 = 24 degree's of freedom, 95% con�dence intervals are given as 0.1439502 ±
2.059539·0.1753753 = [−0.2172421, 0.5051425]. As might have been expected, our 95% con�dence interval
includes the value 0.

We now aim to remove the normal theory assumptions as made in (2.1). The following method
estimates the distribution of Z directly from the data, which is then used to construct con�dence intervals.

2.3.3 The bootstrap-t interval

The method proceeds as follows [1, p.160]. Generate B bootstrap samples x∗1, ...,x
∗
B and for each compute

Z∗(b) =
θ̂∗(b)− θ̂
ŝe∗(b)

where θ̂∗(b) = s(x∗b) is the value of θ̂ for the bootstrap sample x∗b and ŝe∗(b) is the estimated standard

error of θ̂∗ for the bootstrap sample x∗b. For the speci�c case of θ̂ equal to the mean, use the plug-in
estimate

ŝe∗(b) =

{∑n
i=1

(
x∗bi − x̄∗b

)2
n2

} 1
2

The αth percentile of Z∗(b) is estimated by the value t̂(α) such that

#
{
Z∗(b) ≤ t̂(α)

}
B

= α

For example, when B = 5000, an estimate of the 5% point is the 250th largest value of Z∗(b)'s and
an estimate of the 95% point is the 4750th largest value of the Z∗(b)'s. If B · α is not an integer then
calculate k = ceiling(α · (B + 1)) and take the kth largest and the (B + 1− k)th largest values of Z∗(b).
The bootstrap con�dence intervals are then given as[

θ̂ − t̂(1−α) · ŝe, θ̂ + t̂(α) · ŝe
]

Efron and Tibshirani [1, p.161] demonstrate that in large samples the convergence of the bootstrap-t
interval tends to be closer to the desired level than the convergence using either the student's t or standard
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normal. However, this gain in accuracy comes at the price of generality. Standard normal tables can
be applied to all sample sizes, the student's t distribution applies to all samples of �xed size n, however
the bootstrap-t methodology applies only to the given sample. Hence a large value of B is especially
important.

There are further problems with bootstrap-t con�dence intervals. In the above example we have an
explicit formula for our standard error. However, if we do not have an explicit formula for our standard
error then Efron [1, p.162] explains that we are required to create a bootstrap estimate for each bootstrap
sample. This implies we require two levels of bootstrap sampling, which would require an even larger
number of iterations. This is particularly important in our case, where there exists no standard method
to estimate the standard error for a particular score cards AUC.

2.3.4 Percentile bootstrap con�dence intervals

If we consider the histogram of our bootstrap samples as in Figure 2.2 we can see it is roughly normal
in shape. Therefore, it is possible for us to use percentiles from the bootstrap histogram to de�ne our
con�dence intervals.

Suppose that we generate our bootstrap data set x∗ and the bootstrap replications θ̂∗ = s(x∗) are

computed. Now let Ĝ be the cumulative distribution function of θ̂∗. The 1 − 2α percentile interval as
B →∞ is then de�ned as [

Ĝ−1(α), Ĝ−1(1− α)
]

For a �nite number of bootsamples we generate B independent bootstrap data sets x∗1,x
∗
2, ...,x

∗
B and

compute the bootstrap replications θ̂∗(b) = s(x∗b) for b = 1, ..., B. Ordering these bootstrap replications,

we then de�ne θ̂
∗(α)
B to be the 100 · αth empirical percentile of the θ̂∗(b) values. Similarly, de�ne θ̂

∗(1−α)
B

to be the 100 · (1− α)th empirical percentile. The 1− 2α percentile interval is then de�ned as[
θ̂
∗(α)
B , θ̂

∗(1−α)
B

]
If the bootstrap distribution is roughly normal then the percentile con�dence intervals and the stan-

dard normal con�dence intervals will nearly agree. From the central limit theorem, as n → ∞ the
bootstrap histogram will become normal shaped, however for smaller n this might not always be the
case. In the context of credit scoring data, we normally deal with large data sets and using modern day
computers can use a large value for B without signi�cant time constraint and therefore we might be led to
believe we are no better favouring either technique over the other. In actual fact, the percentile method
is our preferred choice. We shall demonstrate why as follows.

If we were to consider the case of a statistic θ such that it has undergone a transformation φ̂ = m(θ̂)

where φ̂ ∼ N(φ, c2), for some value c, then con�dence intervals on θ̂ equals

[m−1(φ̂− z(1−α)c),m−1(φ̂− z(α)c)]

Percentile con�dence intervals adjust for said transformation, however, if we were to naively apply stan-
dard con�dence interval techniques they do not automatically adjust for the transformation and therefore
we would yield unreliable con�dence intervals [1, p.175]. The above invariance to transformations makes
the percentile bootstrap method arguably the most attractive.

2.4 Non-bootstrap methods

A di�erent method used to compute con�dence intervals is using the properties of the Mann-Whitney
statistic. It has been shown that the area under an empirical ROC curve is equal to the Mann-Whitney
two-sample statistic and therefore can be interpreted as the probability that a randomly drawn positive
case has a lower score than a randomly drawn negative case [10, p.838]. We give a brief overview of our
problem in Chapter 4.



Chapter 3

Bootstrapping a Credit Scorecard

3.1 Building a basic Credit Scorecard

We start by building a basic credit scorecard, which aims to predict whether a person does not default.
Our data set consists of 4635 credit card accounts. This has been indexed in time, which means we know
when a particular account was opened and if applicable, when an individual defaulted. This potentially
adds an interesting extra dimension to our analysis. However, for simplicity, we'll start by assuming the
data points are independent of time.

3.1.1 Preparing the data

The data has several variables which could potentially be used to build our score card. These are given
in Table 4.1. It is important to note that our de�nition of default is three missed payments within 12
months of opening the account.

Variable Description Values

ID Applicant/account id to be used for data matching Integer

Age Age of applicant at time of application Integer

Employment Status Employment status at time of application Categories

Tenure Home ownership status at time of application Categories

Months at Address Total months at current address at time of application Integer

Application Channel Channel which the application was made Categories

Open Year Year of account opening 1008 to 2011

Open Month Month of account opening 1 to 12

Open Relative Month Months from January 2008 to date of account opening 5 to 41

Default Did the account default (3 months down) within 12 months of opening? True/False

Statement Number Statement number at time of default 4 to 37

Statement Year Year of default occurring 2008 to 2011

Statement Month Month of default occurring 1 to 12

Statement Relative Month Months from January 2008 to date of default 8 to 41

Table 3.1: Data Variables. Here our categories for Employment Status are: EM - Employed, HO -
Homemaker, RE - Retired, SE - Self-Employed, ST - Student; for Tenure: CT - Council Tenant, HO -
Homeowner, LP - Living with Parents, PT - Private Tenant and for Application Channel: Cold Call,
Internet, Mail, Other.

We start by considering some basic transformation of variables. For the categories, we create indicator
variables for each of the possible values. Further, we shall divide Age and Months at Address into
quintiles. It is also important to consider outliers. An outlier is an extreme value which is therefore
considered highly unlikely; however we must proceed with caution since determining an outlier depends
on the underlying distribution. We shall consider as potential outliers any value which is greater than
1.5 · Interquartile Range above or below the upper and lower quartile. An extreme outlier is taken as

15
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more than 3 · Interquartile Range above or below the upper and lower quartile. For Months at Address
we �nd there are 8 records which could be described as extreme outliers. With the aim of building a
robust model, we shall discard these records. We also note there are 147 records with Tenure blank. We
shall add an indicator variable for these records.

3.1.2 Building the Logistic Regression Model

After doing this we build a scorecard using logistic regression, modeling whether people are �good�. The
scorecard is used to compute the predicted probabilities of being a good payer on the test data set.
Finally the Receiver Operating Characteristic (ROC) curve is plotted. We assume the data points are
independent of time and thus assume the method used to divide the data into test and training data
sets is statistically insigni�cant. Therefore, for simplicity random sampling, without replacement, shall
be used to divide our data sets. We shall divide test:training into the ratio 1:3.

Our general linear model is built using the following variables: Age divided into quintiles, Months at
Address divided into quintiles, Tenure as category variables, Employment Status as category variables
and Application Channel as category variables. A summary for our model is given in Table 4.2.

Estimate Standard Error z value p value Significance

(Intercept) 2.61344 1.07269 2.436 0.01484 *

age1 -0.40073 0.16478 -2.432 0.01502 *

age2 -0.09380 0.16245 -0.577 0.56367

age3 -0.10854 0.24212 -0.448 0.65395

age4 -0.01420 0.17325 -0.082 0.93470

MONTHS_AT_ADDRESS1 -0.08437 0.15959 -0.529 0.59704

MONTHS_AT_ADDRESS2 -0.45323 0.15213 -2.979 0.00289 **

MONTHS_AT_ADDRESS3 -0.46458 0.17036 -2.727 0.00639 **

MONTHS_AT_ADDRESS4 -0.42934 0.19073 -2.251 0.02439 *

TENURE_CT -0.37857 0.17336 -2.184 0.02898 *

TENURE_HO 0.97949 0.15327 6.391 1.65e-10 ***

TENURE_PT -0.09681 0.14744 -0.657 0.51146

EMPLOY_STATUS_EM 0.42133 0.17871 2.358 0.01839 *

EMPLOY_STATUS_HO 0.14514 0.29777 0.487 0.62596

EMPLOY_STATUS_RE 0.45275 0.38633 1.172 0.24123

EMPLOY_STATUS_SE 0.48262 0.23951 2.015 0.04390 *

APPLICATION_CHANNEL_C -1.00227 1.09143 -0.918 0.35846

APPLICATION_CHANNEL_I -1.18398 1.04569 -1.132 0.25753

APPLICATION_CHANNEL_M -1.48169 1.08007 -1.372 0.17011

Table 3.2: Summary for our General Linear Model, with signi�cance codes for each variable given as: 0
`***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We also plot our ROC curve and calculate the models AUC, given as 0.6550542 [Appendix 7.2]. The
bootstrap algorithm is employed with the aim of placing con�dence intervals on this estimate.

3.2 Bootstrapping AUC

In Section 2.3 we discussed four di�erent methods to place con�dence intervals on a particular models
AUC. We shall �rst explain how we bootstrap our AUC before explaining how we interpret the algorithms
presented and then compare each method. In all four algorithms, our statistic of interest, θ, is the model's
AUC and our estimate, θ̂, is given as 0.6550542 as in the previous Section. We shall denote θ = AUC
and θ̂ = ˆAUC = 0.6550542.

There are two di�erent methods to bootstrap AUC as shown in Figure 3.1. The �rst method divides
our original data set in two and then generates one model on the training set and bootstraps the test
data set B times to produce B AUCs formed using the same model. The second method produces B
training data sets and B models based on these data sets. These are then tested on the corresponding
test data set to produce B AUCs.
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Method 1
training→ Model

↗
Data Set x∗1 = (x∗1, ..., x

∗
n)→ ˆAUC

∗
(1)

↘ ↗

testing→ x = (x1, ..., xn)
...

↘
x∗B = (x∗1, ..., x

∗
n)→ ˆAUC

∗
(B)

Method 2 training∗1 → Model 1
↗

Data Set∗1
↘

... testing∗1 → x∗1 = (x∗1, ..., x
∗
n)→ ˆAUC

∗
(1)

↗

Data Set
...

↘
... training∗B → Model B

↗
Data Set∗B

↘
testing∗B → x∗B = (x∗1, ..., x

∗
n)→ ˆAUC

∗
(B)

Figure 3.1: Two di�erent methods to bootstrap AUC

There is a subtle di�erence between each method. It's important to emphasise that the �rst method
builds just one model based on the borrower characteristics. However, the second builds B di�erent
models based on the same characteristics, which are optimised with respect to each of the B training
data sets.

The �rst method is widely referred to in the literature as standard. From a business perspective, credit
rating agencies often build just one model, colloquially referred to as the Champion, and wish to measure
this models performance relative to a Challenger. Furthermore, it is clear that the second method,
where we generate B models and a corresponding AUC for each, is computationally more expensive. The
�rst method will therefore form the basis of our study. We shall now consider how we might bootstrap
con�dence intervals for our model [Appendix 7.3].

3.2.1 Gaussian Normal interval

The �rst method that was described used the central limit theorem. Here we say that as n→∞

Z =
ˆAUC −AUC

ŝe
∼ N(0, 1) (3.1)

and therefore, if we let z(α) indicate the 100 ·αth percentile point of a N(0, 1) distribution, our con�dence
intervals are given as ˆAUC ± z(1−α) · ŝe. However, this is only valid as n→∞, yet our data set contains
information about 1158 individuals. Using B = 1000 our con�dence intervals are given as

• 95% upper con�dence interval = 0.694923

• 95% lower con�dence interval = 0.6151854
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3.2.2 Student's t interval

For a sample of size n

Z =
ˆAUC −AUC

ŝe
∼ tn−1

Using this approximation con�dence intervals are given as[
ˆAUC − t(1−α)

n−1 · ŝe, ˆAUC + t
(α)
n−1 · ŝe

]
For n = 1158 we therefore obtain our con�dence intervals using B = 1000 as

• 95% upper con�dence interval = 0.6949647

• 95% lower con�dence interval = 0.6151437

In both cases our standard error, ŝe, is estimated using the bootstrap method.

3.2.3 The bootstrap-t interval

The procedure is as follows [1, p.160]. We generate B1 bootstrap samples x∗1, ...,x
∗
B1

and for each compute

Z∗(b) =
ˆAUC
∗
(b)− ˆAUC

ŝe∗(b)

where ŝe∗(b) is the estimated standard error of ˆAUC
∗
for the bootstrap sample x∗b. Since there exists no

closed formula to calculate ŝe∗(b), we estimate the standard error using a second bootstrap level. Here
for each bootstrap sample x∗b, b = 1, ..., B1, we generate B2 bootstrap samples x∗b,1, ...,x

∗
b,B2

. The AUC

is then calculated for each ˆAUC
∗
(b, 1), ..., ˆAUC

∗
(b, B2) and used to calculate the standard error

ŝe∗(b) =


∑B2

i=1

{
ˆAUC
∗
(b, i)− ˆAUC

∗
(b, ·)

}2

B2 − 1


1
2

where ˆAUC
∗
(b, ·) =

∑B2

i=1

ˆAUC
∗
(b,i)

B2
. The αth percentile of Z∗(b) is estimated by the value t̂(α) such that

#
{
Z∗(b) ≤ t̂(α)

}
B1

= α

The bootstrap con�dence interval is given as[
ˆAUC − t̂(1−α) · ŝe, ˆAUC + t̂(α) · ŝe

]
Where we estimate ŝe using

ŝeB1 =


∑B1

b=1

{
ˆAUC
∗
(b)− ˆAUC

∗
(·)
}2

B1 − 1


1
2

A visualisation of this method is shown in Figure 4.3. Using B1 = 1000 and B2 = 200, our con�dence
intervals are calculated as

• 95% upper con�dence interval = 0.6917405

• 95% lower con�dence interval = 0.6115309
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3.2.4 Percentile bootstrap con�dence intervals

Here we generate B independent bootstrap data sets x∗1,x
∗
2, ...,x

∗
B and for b = 1, ..., B we compute

AUC∗(b). We order these bootstrap replications and de�ne AUC
∗(α)
B to be the 100 · αth empirical

percentile of the AUC∗(b) values. Similarly, we de�ne AUC
∗(1−α)
B to be the 100 · (1 − α)th empirical

percentile. The 1− 2α percentile interval is then de�ned as[
AUC

∗(α)
B , AUC

∗(1−α)
B

]
Our con�dence intervals using B = 1000 are obtained as

• 95% upper con�dence interval = 0.6967083

• 95% lower con�dence interval = 0.6180078

3.2.5 Comparison

We summarise our results in Table 3.3. As we might have expected there is only a small discrepancy
between Student's t and Gaussian Normal con�dence intervals, due to the large data set. Interestingly
our bootstrap-t con�dence intervals have a smaller upper and lower value and the percentile method
produces a larger lower and upper con�dence interval.

Lower Con�dence Interval Upper Con�dence Interval

Gaussian Normal 0.6151854 0.694923
Student's t 0.6151437 0.6949647
bootstrap-t 0.6115309 0.6917405
Percentiles 0.6180078 0.6967083

Table 3.3: Summary of our Results for one General Linear Model

In the literature, we �nd that percentiles is the preferred method due to its robustness, as indicated
in Skalska (2006) [9]. Furthermore, bootstrap-t con�dence intervals are computationally expensive to
compute. With both of these things in mind, we shall use this as our favoured method for future
applications.

An explanation for the di�erence in results between the percentile and both the normal and Student's
t intervals could be due to the nature of a stochastic process, which the bootstrap methodology falls
under. We might expect that for larger values of B we obtain values which are closer. We shall explore
the e�ect of B on our standard error in the following Section.

3.3 Number of bootsamples

In the above algorithm we took our value of B as 1000. If we consider Figure 3.5, we can see that the value
for the mean of our bootstrap converges as the number of bootstrap samples increases. Furthermore, a
value of B = 200 provides a relatively accurate estimation of our AUC, given limited computer processing
speed [Appendix 7.4].

3.4 Limited data set

We shall now look at a speci�c application of the bootstrap methodology. When building a score card
we have emphasised that it is important for us to measure its performance on an independent data set,
which we refer to as the testing data set. If we measure the performance of a model on the same data
set as it is built on, it is likely we will over estimate its AUC due to over-�tting. However, if we consider
a situation where we are dealing with a small data set it might not be practical to obtain a separate
hold-out sample. If this is the case, one can use cross-validation or bootstrapping to obtain unbiased
estimates as outlined by Lyn Thomas [7, p.102]. We shall �rst look at cross-validation as a potential
solution before analysing how we might implement the bootstrap algorithm.
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Figure 3.3: E�ect on the standard error and mean as the number of bootsamples is increased.

3.4.1 Cross-validation

Here we divide our data set into K subsets, building a model on each and then testing on the complement.
This generates K models and K unbiased estimates of each models performance. A visualisation of this
is given in Figure 3.6.

Data Set1 → Model 1
Data Setc1 → AUC1

↗

Data Set
...

↘
Data SetK → Model K
Data SetcK → AUCK

Figure 3.4: Cross-validation method. We divide the data set into K subsets.

There are two methods to implement this, the rotation method and the leave-one-out method. In the
rotation method the data set is divided into K non-intersecting subsets. A score card is then built on
K − 1 data sets and tested on the other data set. The overall score card is made up of the average of the
estimates for each characteristic and a measure of its performance is the average of the AUCs.

In the leave-one-out approach each data point is left out in turn and a score card is developed on
the remaining data. The overall score card is then an average of those obtained. However, using this
approach, one would need to implement a di�erent performance measure than AUC and additionally
one would need to generate a large number of score cards. Therefore, for many practical purposes the
rotation method might be preferred.

3.4.2 Bootstrapping

Our objective is to obtain an unbiased estimate for the performance of a model. In an ideal scenario this
model is built on one data set and the corresponding AUC is calculated on an independent testing data
set. However, for a situation where we do not have a large enough data set to do this, we are restricted
to building and testing a model on the same data. In order to estimate the performance of this model,
had it been tested on an independent data set, we could use the bootstrapping methodology.

For a data set of size N , we re-sample this with replacement B times to obtain B training and test
data sets. We then develop B models on each and calculate the corresponding AUC on both the training
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training∗1 → Model 1→ AUC1

↗
Data Set∗1

↘
... testing∗1 → AUCc

1

↗

Data Set
...

↘
... training∗B → Model B→ AUCB

↗
Data Set∗B

↘
testing∗B → AUCc

B

Data Set → Model → ˜AUC

Figure 3.5: Visualisation of how we might bootstrap a limited data set.

data set and the test data set. As discussed previously we expect the AUC obtained for the training data
set to be higher than that obtained using the independent test data set. Here we shall denote AUCb as
the AUC obtained using the training data set and AUCc

b as the AUC obtained using the test data set,
for b = 1, ..., B. A visualisation of the methodology is given in Figure 3.7.

An important assumption is that the mean of the errors AUCb − AUCc
b is a good estimate for the

di�erence between the AUC obtained when the model is tested on the same data set, denoted ˜AUC,
minus the AUC obtained if its performance were measured on an independent data set, denoted ˆAUC.
Therefore, we have

ˆAUC ≈ ˜AUC−

(∑B
b=1 AUCb −AUCc

b

B

)
Since we re-sample the original data set with replacement, the chance that Data Set∗b does not contain

an element of the original data set is
(
1− 1

N

)N
. As N → ∞ this converges to 1/e. Therefore, there is a

1/e chance the data point is not in Data Set∗b and a 1− 1/e chance it is in Data Set∗b . As a result, a more
stable estimate can be obtained as [7, p.104]

ˆAUC ≈
B∑
b=1

(
1− 1

e

)
AUCc

b +

(
1

e

)
AUCb

We now seek to demonstrate this technique.

3.4.2.1 Application of the bootstrap

Consider the same model as before, however with a smaller data set of only 1000 individuals. Using
B = 1000, the AUC for the model when its performance is measured on the same data set, denoted ˜AUC,
is given as 0.690485. Using the bootstrap technique, we calculate an estimate for ˆAUC as 0.6872121. As
expected this estimate is lower than ˜AUC. [Appendix 7.5]

We shall now consider how we might apply the bootstrap methodology with the aim of comparing
score cards.



Chapter 4

Comparing Models

4.1 Hypothesis testing

A hypothesis test allows us to compare models in an e�ective manner. If we have an established model
A and a new model B such that B has a higher AUC than A, then we might wish to test whether this
di�erence is statistically signi�cant. In credit scoring literature, the new model is often referred to as the
Challenger, whilst the current established model is referred to as our Champion. We consider the null
hypothesis that the AUCs produced by each model are equivalent.

We start by considering the Mann-Whitney test as a potential method to �nd con�dence intervals on
the di�erence between models. We demonstrate some of the limitations of the methodology and show
how we might employ the bootstrap algorithm as a way of constructing a hypothesis test.

4.2 Mann-Whitney Test

If we consider our data set x of n individuals to be made up of p bads and q goods such that x =
(r1, ..., rp, s1, ..., sq) = (r, s), n = p+q, then the area under the ROC curve is equal to the Mann-Whitney
two-sample statistic applied to the two samples r and s. We can therefore apply the general theory
of U-statistics. The Mann-Whitney statistic estimates the probability, θ, that a randomly drawn good
individual has a lower score than a randomly drawn bad individual [10, p.838]. Our estimate is computed
as

θ̂ =
1

pq

q∑
j=1

p∑
i=1

ψ(ri, sj) (4.1)

where

ψ(R,S) =


1 S < R
1
2 S = R

0 S > R

Therefore, E(θ̂) = θ = Pr(S < R) + 1
2Pr(S = R). This is equal to the area under our ROC curve [8,

p.276]. Con�dence intervals can then be found using the theory as outlined in DeLong [10, p.838-841].
However, further complications arise when comparing the di�erence in AUCs between two models

based on the same data. In this case we must also take into account the correlated nature of the data.
Therefore, we not only have to compute the variance of each AUC, we must also compute the covariance
between them. If we de�ne the Null Hypothesis to be such that both AUCs are equal, we �nd that test
statistic T is de�ned as

T =
(U1 − U2)

2

σ2
U1

+ σ2
U2
− 2σU1

σU2

Where U1 and U2 are found using the formula as given in (4.1). This T statistic is asymptotically
χ2 distributed with one degree of freedom, which allows us to compute our critical value for a given
con�dence interval α [8, p.281].

23
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As we can see, this methodology is not only complex in its execution, it also requires considerable
theoretical consideration. Another potential method is to apply the Wilcoxon signed-rank test, however,
this also su�ers similar constraints. As a consequence bootstrapping may be considered preferable due
to its simplicity.

4.3 Bootstrapping the di�erence in AUCs

We made reference to a fundamental problem in the previous section, when comparing AUCs produced
by models based on the same test data set, there exists correlation between these values. Bearing this in
mind we shall consider the Two-Sample bootstrap problem, with the aim of comparing two models.

4.3.1 Two Sample Bootstrap

So far we have just considered the basic case of a one-sample bootstrap problem. This is where our data
x is sampled from a single probability distribution F . In this case we can refer to F as the probability

model. We'll now consider the more complex two-sample problem [1, p.202].
Suppose we have a generalised probability model P which is comprised from two probability distribu-

tions F and G. We denote this as P = (F,G). If we denote z = (z1, ..., zm) as a random sample observed
from G and y = (y1, ..., yr) as a random sample observed from F , then the observed data x comprises
of z and y. We denote this as x = (z,y) where x has length n = m + r. We therefore have y and z
mutually independent random samples taken from F and G respectively. This set-up is known as a two
sample problem.

If we consider the case of model building with only one test data set, we can see that we do not
have two mutually independent random samples and therefore it would be naive to directly compare
con�dence intervals on AUC. A potential solution is to therefore split our original data set into three
mutually exclusive sets: one training set and two test data sets, such that the test data sets are of the
same size. We can then independently compute each model's AUC. However, this potentially generates
further problems. How do we generate these data sets? How can we assume that if a particular model
outperforms another this is not as a result of it being tested on a di�erent data set?

Our speci�c question is whether the distribution F is the same as the distribution G. Recalling that
the data set is time indexed, this might not always be the case, dependent on the method used to divide
the data sets up. To proceed we can employ the two sample problem set-up to formulate a hypothesis
test. If we �nd a lack of evidence that the distributional forms of the two data sets di�er, then we might
assume we could e�ectively compare score cards built on di�erent data sets.

4.3.2 Proposed Methodology

We aim to use the bootstrap method to test whether the di�erence between two AUCs is statistically
signi�cant. We therefore impose the following hypothesis test:

• H1: The di�erence between the two AUCs is signi�cant.

• H0: We have no evidence that the di�erence between the two AUCs is signi�cant.

In order to tackle this hypothesis test we divide our data set into three mutually exclusive sets, one
training set and two test data sets, such that the distributional form of the two test data sets are F and
G, respectively. We then consider the hypothesis test:

• H1: F 6= G.

• H0: F = G.

If it is the case that we have no evidence that F 6= G, then we might assume the distributional forms are
identical. We then proceed by considering whether the mean bootstrapped AUC generated from each
data set are equivalent.

• H1: The mean of bootstrapped AUCs generated from z di�ers from the mean of the bootstrapped
AUCs generated from y.
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• H0: Mean of the bootstrapped AUCs generated from z equals the mean of the bootstrapped AUCs
generated from y.

We shall outline how we might tackle these two hypothesis tests before outlining several potential problems
in Section 4.3.6.

4.3.3 Algorithm for testing distributional forms

We consider the null hypothesis H0: F = G vs. the alternate hypothesis H1: F 6= G and interpret the
algorithm given in Efron [1, p.221] as follows

1. Draw B bootstrap samples of size m+ r with replacement from x. Call the �rst m observations z∗

and the remaining r observations y∗.

2. Evaluate s(·) de�ned by

s(xb
∗) = AUC2(b)−AUC1(b), for b = 1, 2, ..., B

where AUC1(b) corresponds to the AUC generated under the �rst model from data set z∗ for
bootstrap sample b.

3. Approximate the achieved signi�cant level (ASLboot) as

ˆASLboot =
# {s(x∗b) ≥ sobs}

B

where sobs = s(x) is the observed value of the statistic.

A visualisation of this procedure is given in Figure 4.1.

Bootstrap World
y∗1 → AUC1(1)
z∗1 → AUC2(2)

}
→ s(x∗1) = AUC2(1)−AUC1(1)

↗

x = (y, z)
...

...
↘

y∗B → AUC1(B)
z∗B → AUC2(B)

}
→ s(x∗B) = AUC2(B)−AUC1(B)

⇑

Real World
y → AUC1

↗ ↗ ↘
Data Set → training sobs = AUC2 −AUC1

↘ ↘ ↗
z → AUC2

Figure 4.1: The two di�erent models are built on the same training data set, but are tested on di�erent
test data sets.

4.3.4 Algorithm for testing equality of means

If the two data sets have the same probability distribution, then we could consider whether the mean
of the two statistics are equal. We consider the null hypothesis H0: The mean AUC generated from
the model tested on z is equal to the mean AUC generated from the model tested y vs. the alternate
hypothesis H1: The mean AUC generated from z di�ers from the mean generated from y. This could
potentially allow us to compare whether one model outperforms another by comparing AUCs. The
algorithm as presented in Efron [1, p.224] can be interpreted as follows
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1. Form B1 bootstrap data sets (z∗,y∗) where z∗ is sampled with replacement from z1, z2, ..., zm and
y∗ is sampled with replacement from y1, y2, ..., yr.

2. Evaluate ˆAUC∗1(1), ..., ˆAUC∗1(B1) and ˆAUC∗2(1), ..., ˆAUC∗2(B1) where ˆAUC∗1(b) is generated from y∗

and ˆAUC∗2(b) is generated from z∗. For ease of notation we'll refer to these sets as AUC1(1), ...,AUC1(B1)
and AUC2(1), ...,AUC2(B1).

3. Evaluate ˜AUC1(i) = AUC1(i) − AUC1(·) + AUC and ˜AUC2(i) = AUC2(i) − AUC2(·) + AUC,
i = 1, 2, ..., B1, where

AUCj(·) =

B1∑
b=1

AUCj(b)

B1
for j = 1, 2

and AUC is the mean of AUC1(·) and AUC2(·).

4. Form B2 bootstrap data sets (AUC∗1,AUC2
∗) where AUC∗1 is sampled with replacement from

˜AUC1(1), ..., ˜AUC1(B1) and AUC∗2 is sampled with replacement from ˜AUC2(1), ..., ˜AUC2(B1). De-

note ˜AUC
∗
1(b) = ( ˜AUC

∗
1(b, 1), ..., ˜AUC

∗
1(b, B1)) and ˜AUC

∗
2(b) = ( ˜AUC

∗
2(b, 1), ..., ˜AUC

∗
2(b, B1)) for

b = 1, ..., B2.

5. Calculate AUC
∗
1(b) and AUC

∗
2(b) for b = 1, ..., B2, where

AUC
∗
j (b) =

B1∑
i=1

˜AUCj(b, i)

B1
for j = 1, 2

6. Evaluate s(·) de�ned by

s(AUCb
∗) =

AUC
∗
2(b)−AUC

∗
1(b)√

σ̄2∗
1

B1
+

σ̄2∗
2

B1

for b = 1, 2, ..., B2 (4.2)

where σ̄2∗
1 = 1

B1−1

∑B1

i=1

(
˜AUC1(b, i)−AUC

∗
1(b)

)
and σ̄2∗

2 = 1
B1−1

∑B1

i=1

(
˜AUC2(b, i)−AUC

∗
2(b)

)
.

7. Approximate the achieved signi�cant level (ASLboot) by

ˆASLboot =
# {s(AUC∗b) ≥ sobs}

B2

where sobs = s(x) is the observed value of the statistic.

For normal populations equation (4.2) no longer has a Student's t distribution, which in the literature is
referred to as the Behrens�Fisher problem [1, p.223]. A visualisation of the procedure is given in Figure
4.2.

4.3.5 Rational

In both hypothesis tests we made reference to an Achieved Signi�cance Level (ASL), this is a measure of
the rate of evidence against H0. We shall use the guidelines given in Table 4.1 as a basis for any decisions
made.

ASL < 0.10 Evidence against H0

ASL < 0.05 Reasonably strong evidence against H0

ASL < 0.025 Strong evidence against H0

ASL < 0.01 Very strong evidence against H0

Table 4.1: Rate of evidence against H0 as given in Efron [1, p.204]

We also note some fundamental subtleties in the above methodology. In our second hypothesis test,
H0 is that the means are equivalent. We therefore require a distribution that estimates the population
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y∗1 → AUC1(1)
↗

y
.
.
.

.

.

.
↘

y∗B1
→ AUC1(B1)


→ AUC1(·)

z∗1 → AUC2(1)
↗

z
.
.
.

.

.

.
↘

z∗B1
→ AUC2(B1)


→ AUC2(·)



→ AUC

y∗1 → AUC1(1)→ ˜AUC1(1)
↗

F̂
.
.
.

.

.

.
↘

y∗B1
→ AUC1(B1)→ ˜AUC1(B1)


→ AUC1

( ˜AUC
∗
1(1, 1), ..., ˜AUC

∗
1(1,B1))→ AUC

∗
1(1)

↗
.
.
.

.

.

.
↘

( ˜AUC
∗
1(B2, 1), ..., ˜AUC

∗
1(B2,B1))→ AUC

∗
1(B2)


z∗1 → AUC2(1)→ ˜AUC2(1)

↗

Ĝ
.
.
.

.

.

.
↘

z∗B1
→ AUC2(B1)→ ˜AUC2(B1)


→ AUC2

( ˜AUC
∗
2(1, 1), ..., ˜AUC

∗
2(1,B1))→ AUC

∗
2(1)

↗
.
.
.

.

.

.
↘

( ˜AUC
∗
2(B2, 1), ..., ˜AUC

∗
2(B2,B1))→ AUC

∗
2(B2)





→ s(AUCb
∗)

Figure 4.2: Method used to obtain AUC1(·), AUC2(·), AUC used to evaluate ˜AUC1(i) and ˜AUC2(i) for
i = 1, 2, ..., B1 and how we then evaluate our statistic s(AUCb

∗).

under H0. Neither the distribution F̂ nor Ĝ satisfy this condition. Using the following translation
˜AUC1(i) = AUC1(i)−AUC1(·) + AUC, however, we are able to construct a null distribution for the data

under H0 [1, p223].
Also, we should note that in both of the above algorithms, it is assumed that sobs ≥ 0. For the case

when sobs < 0 we adjust ˆASLboot to

ˆASLboot =
# {s(AUC∗b) ≤ sobs}

B2

Using the above algorithms we therefore could attempt to use the methodology outlined in Section
4.3.2 to compare score cards. However, there are problems with this approach as we shall demonstrate
with the following example.

4.3.6 Example

We consider the probabilities of default for two separate data sets each comprising of 100 individuals.
The �rst data set, y, is sampled from a N(0.5, 0.1) distribution and the second data set, z, is sampled
from a U(0.4, 0.6) distribution. If we compare histograms of the observations as in Figure 4.3, it might
be considered obvious that the two distributions are not the same. However, when implementing our
algorithm to compare distributional forms, our hypothesis test provides a ASL of 0.199 and therefore �nds
no signi�cant evidence that the distributions are di�erent [Appendix 7.6]. We obtain similar problems
when using our actual data set.

Let's consider �xing our two testing sets, such that the �rst testing set is taken from the �rst 25%
of the data and the second data set is taken from the last 25%. We build just one score card using the
same variables as in the previous chapter on the centre 50% of the data and measure its performance on
both test data sets. Using just one model we �nd that the AUC when tested on the �rst 25% of the data
is 0.7533052, however when it is tested on the last 25% of the data is only 0.5664593. This suggests that
the model seems to perform far better on past data than future data. We implement our distributional
form algorithm and �nd an Achieved Signi�cance Level of 0.528, indicating that the data is from the
same distribution, however the Achieved Signi�cance Level when testing the equality of means is 0, which
provides incredibly strong evidence that the means are di�erent. The key point here is that we only built
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Figure 4.3: Histogram of 100 observations taken from a N(0.5, 0.1) distribution and 100 points sampled
from a U(0.4, 0.6) distribution.

one model, so any di�erences in the AUCs must be due to di�erences in the distributional form of the
test sets. As we can see there is a de�nite �aw in our method as we have neglected one key fact, that the
data is time dependent.

This �nding is particularly problematic. If we cannot fairly or accurately test whether the distribution
of the two data sets are identical any further results are unreliable. We shall therefore consider a di�erent
method to bootstrap performance measures.

4.4 Bootstrap the di�erence in AUC

When discussing the Mann-Whitney method, we noted that there exists correlation between the values
when comparing AUCs produced by models based on the same test data set. As we have demonstrated,
it is naive to simply take two test data sets to try and avoid this problem. However, we can employ
the bootstrap algorithm to provide a potential solution. We note that when we �nd percentile bootstrap
con�dence intervals we make no assumptions about the form of the standard error. The intervals are
inferred directly from the distribution of the bootstrap replications. It is therefore possible to obtain
estimates for our con�dence intervals on the di�erence in AUC. We state this formally as follows [1,
p.107]

1. Generate B independent bootstrap testing data sets x∗1,x
∗
2, ...,x

∗
B and for b = 1, ..., B compute

AUC∗1 (b) and AUC∗2 (b)

2. Calculate db = AUC∗1 (b)−AUC∗2 (b)

3. Order these di�erences and de�ne d
(α)
B to be the 100 · αth empirical percentile of the db values.

Similarly, we de�ne d
(1−α)
B to be the 100 · (1 − α)th empirical percentile. The 1 − 2α percentile

interval is then de�ned as [
d

(α)
B , d

(1−α)
B

]
We then consider the hypothesis H0: The di�erence is zero vs. H0: the di�erence is not zero. If the value
0 is not within our con�dence intervals then we can reject the null hypothesis at signi�cance level α.

4.4.1 Di�erence between models is potentially insigni�cant

We consider two identical models, which di�er only by one term, corresponding to a random variable, ri,
where ri v N(0, 0.1). We might expect that this extra random variable will do little to change the model
in any signi�cant manner. The other variables are: the �rst age quintile, the second and third months at
address quintile, and whether the person is a home owner or a council tenant. We obtain the following
results [Appendix 7.8]:
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Figure 4.4: Histogram for an statistically insigni�cant and signi�cant di�erences between AUCs.

• AUC from model 1 = 0.6613746

• AUC from model 2 = 0.6649872

• Di�erence in AUCs= -0.003612672

• 95% upper percentile Con�dence Interval = 0.004792017

• 95% lower percentile Con�dence Interval = -0.01156245

We can see that the con�dence intervals contain zero and therefore we do not accept H1.

4.4.1.1 Di�erence between models is signi�cant

Here we consider the �rst model as above, however the second model has just one variable, whether the
person is a home owner. We obtain the following results [Appendix 7.7]:

• AUC from model 1 = 0.6734853

• AUC from model 2 = 0.638587

• Di�erence in AUCs= 0.03489835

• 95% upper percentile Con�dence Interval = 0.05669581

• 95% lower percentile Con�dence Interval = 0.0142205

Since zero is not included in our con�dence intervals, the di�erence between these two models AUC is
statistically signi�cant. We therefore reject H0 with signi�cance level α. A histogram of our bootstrap
replications for both examples is given in Figure 4.4.

As we made clear when comparing AUCs generated from a model tested on the �rst and last quarter
of the data, the time dependence is incredibly important. We shall now consider how we might employ
the bootstrap methodology for time dependent data with a speci�c focus on homogeneous populations.
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Homogeneous Time Dependent Data

5.1 Introduction

As we mentioned in the previous chapter, we have thus far neglected the key time dependent element of
our data. We demonstrated that if we build a model on the middle half of the data and then test its
performance on the �rst and last quarter we obtain very di�erent performance measures. We shall start
by investigating the nature of the default rates.

It is important to emphasise that this study assumes a homogeneous, or equivalent, population.
There is also the problem of right-censored data, due to a considerable number of accounts being closed
prematurely, or failing to default before our study ends at relative month 41. We will later consider
survival analysis which deals with this speci�c issue.

We consider the month the account was opened as a time stamp and we can see in Figure 5.1 that
if we divide the data up into blocks of 5%, accounts which were opened earlier in the data set, were on
average less likely to result in a default.

Figure 5.1: Relative number of defaults dividing the data set up by month or in blocks of 5%

We might take the view that the default rates are not simply just a random sample from a distribution,
arguing that there is too much structure. If we assume that on average the individuals that make up
each month are roughly equivalent, then the changes in the default rate are, at least in part, as a result
of changes in the macro-economic environment.

We consider whether it is possible to model this default percentage as a time series. Using the ar

command in R it can be shown that it �ts a �rst order autoregressive model to the data, we'll therefore
use this as the basis of our study.

30
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5.2 Autoregressive model theory

A �rst order autoregressive model, denoted AR(1), satis�es the following di�erence equation

Yt = c+ φYt−1 + εt

where {εt} is a white noise process, such that its mean is zero, its variance is σ2 and the ε's are uncorrelated
across time [14, p.47].

We say that {Yt} is stationary if both the mean and variance are independent of t and E {Yt1 , Yt2} is
a function of the absolute distance |t2 − t1| only. Similarly for the covariance between Yt1 and Yt2 .

For a discrete time stationary process de�ne the autocovariance sequence sτ as sτ = cov {Xt, Xt+τ},
where τ is called the lag. We also de�ne the autocorrelation sequence by

ρτ =
sτ
s0

=
cov {Xt, Xt+τ}

σ2

here s0 = cov {Xt, Xt} = var {Xt}.
We are able to write our di�erence equation as

Yt = c+ φYt−1 + εt
= c+ φ (c+ φYt−2 + εt−1) + εt
= φ2Yt−2 + φ (c+ εt−1) + (εt + c)

=
...

=
∑∞
k=0 φ

k (c+ εt−k)
= c

1−φ +
∑∞
k=0 φ

kεt−k

Note E (Yt) = µ = c
1−φ and var (Yt) = E (Yt − µ)

2
= E

(∑∞
k=0 φ

kεt−k
)2

= σ2
∑∞
k=0 φ

2k = σ2

1−φ2 . For

var (Yt) <∞ we therefore require |φ| < 1.
It can also be shown that ρτ = φ|τ | for τ = 0,±1,±2 [14, p.54] and thus obtain an exponentially

declining autocovariance sequence. We shall now consider how we might �t an autoregressive model to a
time series.

5.3 First order autoregressive model simulation

Let's consider the following data in Table 5.1 which we might wish to �t a AR(1) model to.

Period Score Period Score Period Score Period Score Period Score

1 0.000 11 0.091 21 -0.157 31 0.006 41 0.197

2 -0.074 12 0.122 22 -0.071 32 0.027 42 0.203

3 -0.300 13 0.026 23 0.075 33 0.156 43 0.094

4 -0.340 14 -0.003 24 0.068 34 0.083 44 0.094

5 -0.175 15 0.008 25 0.097 35 0.196 45 0.164

6 -0.007 16 0.001 26 0.236 36 0.190 46 0.350

7 -0.075 17 -0.125 27 0.079 37 0.058 47 0.331

8 -0.021 18 -0.179 28 0.009 38 0.119 48 0.201

9 0.020 19 -0.094 29 0.202 39 0.130 49 0.275

10 0.082 20 -0.093 30 0.066 40 0.245 50 0.117

Table 5.1: Average credit scores over 50 periods

We shall demonstrate how we might estimate our parameter using least squares estimation as described
in Efron [1, p.94].

De�ning yt as the realisation of Yt we begin by estimating E (Yt) = µ using ȳ (0.05412222 for our
data) and then setting xt = yt− ȳ, such that xt is the realisation of the �rst-order autoregressive process
Xt. If we let ϕ be our guess for the true value of φ. We then de�ne the residual squared error (RSE) as

RSE (ϕ) =

N∑
i=2

(xt − ϕxt−1)
2
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The residual squared error then achieves its minimum when ϕ is close to the true value of φ, so we
estimate our value of φ as

RSE(φ̂) = minϕRSE (ϕ)

For an AR(1) process this is computed as

φ̂ =
(
XTX

)−1
XTx

where x = (x2, x3, ..., xN ) and X = (x1, x2, ..., xN−1).
We shall demonstrate how bootstrapping residuals or block bootstrapping can be used to determine

how accurate our estimate φ̂ is.

5.3.1 Bootstrapping residuals

Let's assume our probability distribution F and φ are unknown, however our mean µ is known and equal
to ȳ. We begin by computing what Efron [1, p.95] de�nes as approximate disturbances

ε̂t = xt − φ̂xt−1

If we let N = Total number of observations, we have N = 50 for our example. We therefore estimate F
using the empirical distribution F̂ where this puts a probability 1

N−1 on each of the points ε2, ..., εN .
In order to implement our bootstrap algorithm we begin with an initial value x1 = y1 − ȳ which is

treated as a �xed constant. We then calculate the bootstrap time series as

x∗2 = φ̂x1 + ε∗2
x∗3 = φ̂x∗2 + ε∗3
...

...

x∗N = φ̂x∗N−1 + ε∗N

where our ε∗t values are randomly sampled with replacement from (ε∗2, ..., ε
∗
N ). This algorithm is repeated

for some large number B to provide B estimates φ̂∗.

Figure 5.2: Histogram of the B = 1000 bootstrap replications of φ̂. Interestingly this appears to have a
long lower tail and does not appear to be perfectly normal.

Using the original data as given in Table 5.2 we estimate φ̂ as 0.770174. On implementation of our
algorithm with B = 1000 we estimate our percentile con�dence intervals as [Appendix 7.10]

• 95% upper con�dence interval = 0.9006665

• 95% lower con�dence interval = 0.5088065
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We also estimate the standard error for our bootstrapped estimates of φ̂∗ as 0.1007956. In Figure 5.2 we
can see that the histogram does not appear to be normal. Lower values for φ would correspond to an
autoregressive process where the random, white noise process has a greater in�uence. Taking the mean
of our bootstrap sample for φ̂ gives a value of 0.7416875, below that estimated using the original data.
However, this might not be considered surprising, given that such a small sample was provided for our
autoregressive process.

We shall now consider block bootstrapping as an alternate method to estimate the accuracy of φ̂.

5.3.2 Block bootstrapping

Block bootstrapping is a method which samples the time series in blocks. Chernick explains that for
stationary time series, successive observations are correlated but observations separated by a large time
gap are uncorrelated [13, p100]. This can be seen by the exponentially declining autocorrelation function
for a stationary AR(1) model. The autocorrelation function, shown in Figure 5.3, follows this approximate
structure.

Figure 5.3: Autocorrelation function for our data

For this method, rather than �tting a model and then sampling from the residuals, we sample from
the time series itself and then �t the autoregressive model [1, p.101]. However, unlike with the normal
bootstrap methodology, instead of re-sampling individual data points we sample blocks of data points.
This allows us to retain the time dependent nature of the data. We illustrate the general principle in
Figure 5.4.
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Figure 5.4: Block bootstrapping methodology. Speci�cally this is the non-overlapping block bootstrap
method with block length 3.

There are 4 main block bootstrapping methods we shall describe. These are [13, p.104]

• Moving block bootstrap

• Non-overlapping

• Circular

• Stationary
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The idea is to re-sample the data points in blocks such that we re-sample just enough blocks to obtain
a series of roughly the same size as the original time series [1, p.101]. The block length l is chosen such
that observations more than l units apart are independent. We therefore retain the correlation within
the blocks. We shall provide an overview of each method.

5.3.2.1 Moving block

For the moving block bootstrap we choose k blocks of length l, such that n ≈ k · l, where it is possible
for the blocks to overlap. Speci�cally for an original data set of size n, de�ne k = floor(nl ) and N = k · l.
We then generate k blocks of size l to form a bootstrapped data set of size N . When estimating the
standard error we must remember to multiply by

√
N/n to adjust for the di�erent lengths in the series [1,

p.101]. We illustrate the method with the following example. Suppose we have data: x = (x1, . . . , x12)
and wish to construct blocks of size 3, we begin by constructing 10 blocks of length 3: y1 = (x1, x2, x3),
y2 = (x2, x3, x4), . . . , y10 = (x10, x11, x12). We can then sample 4 of the blocks yi randomly and put
these together to form x∗. This keeps some part of the dependence, however some is lost when we connect
blocks. Furthermore, we can see that points at the beginning and end of the data series are less likely to
be sampled.

5.3.2.2 Non-overlapping

This is similar to the moving block bootstrap, except that the blocks do not overlap. For example if we
have data: x = (x1, . . . , x12) we can construct 4 blocks of length 3, y1 = (x1, x2, x3), y2 = (x4, x5, x6),
y3 = (x7, x8, x9), y4 = (x10, x11, x12) and then re-sample the blocks yi.

5.3.2.3 Circular

The circular block bootstrapping method is again similar to the moving block bootstrap however it
periodically extends the series of points to form the blocks. For example if we have data: x = (x1, . . . , x12),
in the normal moving block bootstrap we can only construct 10 blocks. In the circular block bootstrap
we can construct 12 blocks of length 3 by periodically extending the data e.g. y1 = (x1, x2, x3), y2 =
(x2, x3, x4), . . . , y10 = (x10, x11, x12),y11 = (x11, x12, x1),y12 = (x12, x1, x2). We can then sample the
blocks yi. Unlike the moving block bootstrap and the non-overlapping bootstrap, the circular bootstrap
method assigns equal probabilities to each of the original observations.

5.3.2.4 Stationary

Here we again periodically extend the data structure in a similar manner as in the circular block bootstrap.
However, instead of using a �xed block length, the block length is given using the random length L, where

Pr(L = j) = (1− p)j−1p for j = 1, 2, 3, ...

This follows the geometric distribution with parameter p. The mean block length for L is p−1. We
therefore choose p in the same manner as we choose a �xed block length [13, p.105] and select the start
point of each block by sampling with replacement from {1, ..., n}. The blocks are then placed together to
form our bootstrap replication [3, p.1304].

5.3.2.5 Implementing the block bootstrap algorithm

We now aim to implement the block bootstrapping algorithms, but �rst must select a block length l.
From our autocorrelation sequence in Figure 5.3 we can see that for lag 5 or more the observations
are approximately uncorrelated and therefore l = 5 might be a sensible choice for our block length.
Furthermore for l = 5 in the moving block, non-overlapping and circular algorithms, we ensure that
the block bootstrap replications are of the same size as the original data set. For the stationary block
bootstrap we set p = 0.2 such that the mean block length is 5.

In Table 5.2 we �nd summary statistics for our block bootstrap replications. Our parameter, φ̂, using
the original data was estimated as 0.770174. However, we see that in all four block bootstrapping cases
we estimate our parameter φ̂ closer to 0.6. Furthermore, the Stationary and Moving Block algorithms
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Figure 5.5: Histograms from our block bootstrap replications

Standard Error Upper CI Lower CI Mean

Moving Block 0.0952694 0.7672566 0.4011084 0.6217096
Non-overlapping 0.09758468 0.7788323 0.3936644 0.6338416
Circular 0.1029845 0.7730011 0.3683701 0.6080378
Stationary 0.1845657 0.7648305 0.3127508 0.5918667

Table 5.2: Summary statistics for our block bootstrap replications [Appendix 7.11 - 7.14].

do not include 0.770174 within the 95% con�dence interval. This is likely to be as a result of the long
tailed, non-normal shaped histograms for our bootstrap replications, as shown in Figure 5.5.

In actual fact the data in Table 5.1 was generated using Yt = 0.8Yt−1 + εt where εt ∼ N(0, 0.1) and
initial condition Y1 = 0 [Appendix 7.9]. Using the inbuilt ar(·) function in R we obtained the following
estimates

• Coe�cient estimate: 0.7673

• Standard error: 0.09447

Chernick describes some of the problems of block based bootstrapping methods, in particular that the
re-sampled blocks do not quite mimic the behavior of the time series and that they have a tendency to
weaken the dependency in the series. A potential solution is to re-sample blocks of blocks [13, p.105].
This is described in detail in Reference 5.

An overall problem with either of the above methods is that we need to know which model to �t to the
data beforehand. Without considering more, higher order autoregressive models we cannot accurately
say that this model is appropriate.

We shall now consider the case of �tting an autoregressive model to our default rates as shown in
Figure 5.1.
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5.4 Default Rates autoregressive model

We shall use the default rates when the data is divided into 5% blocks. A breakdown for these values is
given in Table 5.3.

Percentile Default Rate (%) Percentile Default Rate (%)

5% 16.88 55% 17.32

10% 16.45 60% 20.35

15% 8.66 65% 24.24

20% 8.66 70% 23.81

25% 8.23 75% 16.45

30% 10.39 80% 17.32

35% 12.55 85% 18.61

40% 12.99 90% 19.48

45% 12.99 95% 21.21

50% 15.58 100% 23.38

Table 5.3: Realised default rates for our data divided into blocks of 5%

We estimate φ̂ as 0.8608599 and start by bootstrapping the residuals. With B = 1000 we estimate
our percentile con�dence intervals as

• 95% upper con�dence interval = 1.033468

• 95% lower con�dence interval = 0.3993687

We plot our histogram for bootstrap replications of φ̂ in Figure 5.6 and similarly to what was obtained
previously, the distribution appears relatively non-normal, with a long lower tail. We estimate our
standard error as 0.1661599 and the mean of our bootstrap sample for φ̂ gives a value of 0.8034312, which
is again below that estimated using the original data. Interestingly the 95% con�dence interval has an
upper bound greater than 1. For a stationary autocorrelation function we require |φ| < 1 and therefore
we cannot assume that if an autoregressive model is appropriate for our default rates, that this process
is stationary.

Figure 5.6: Histogram of our bootstrap replications of φ̂ for B = 1000 when bootstrapping residuals for
our Default Rates and the corresponding autocorrelation function for our data.

We shall now consider block bootstrapping as an alternate method to estimate the accuracy of φ̂.
We consider the moving block, non-overlapping, circular and stationary block bootstrap techniques.
From our autocorrelation function as shown in Figure 5.6 we can see that after approximately lag 5 the
observations appear to be uncorrelated and therefore we shall use a block length of 5. For the stationary
block bootstrap we set p = 0.2 such that the mean block length is 5. We might also like to note that
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Figure 5.7: Histograms from our block bootstrap replications

compared to our previous example the con�dence intervals for our autocorrelation function are wider, as
shown by the dotted line in Figure 5.6.

Standard Error Upper CI Lower CI Mean

Moving Block 0.1213944 0.88054 0.4055437 0.6808143
Non-overlapping 0.08035733 0.8601131 0.5517897 0.7171497
Circular 0.1295804 0.8601131 0.3514478 0.6485303
Stationary 0.1400218 0.8355515 0.2824104 0.630226

Table 5.4: Summary statistics for our block bootstrap replications.

In Table 5.4 we �nd summary statistics for our block bootstrap replications. Our parameter, φ̂, using
the original data was estimated as 0.8608599. However, we see that in all four block bootstrapping cases
we estimate our parameter φ̂ closer to 0.65. In addition the Stationary, Non-overlapping and Circular
algorithms do not include 0.8608599 within the 95% con�dence interval. This is likely to be as a result
as the long tailed, non-normal shaped histograms for our bootstrap replications.

If we �t an autoregressive model to the process using the inbuilt function in R we obtain the following
estimates

• Coe�cient estimate: 0.7707

• Standard error: 0.032955

The above methodology demonstrates how we might model default rates as an autoregressive process.
However, we must note that this interpretation is only meaningful if the characteristics of lenders are
roughly equivalent. In other words, the above requires that the individuals which make up our population
to be homogeneous. As we know this is not necessarily the case.

Furthermore, there exists more problems when calculating the default rates in this manner. Our
method to determine the relative time when the accounts defaulted was to time stamp them using the
opening month. A potential problem is that some of our accounts were closed early. This is referred to as
right censoring. Lyn Thomas [7, p.251] provides an indication about the importance of survival analysis
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within the context of right censored credit scoring data. It is with this in mind, that we shall consider
the Kaplan Meier Estimate of the survivor function, S(t).

5.5 Survival Analysis

Continuing on the path of assuming the individuals within the population are roughly homogeneous, we
can introduce non-parametric methods to study the survival function for our data [7, p.253]. We shall
start by introducing the survivor function, S(t), which is de�ned such that

S(t) = P (T > t)

In the context of credit scoring, we note that the probability of a loan surviving until time t is equivalent
to the person being classed as good. Therefore our survivor function is such that S(t) = PG(t), where for
ease of notation, we denote Pr(good|data q at time t) = PG(t). We also de�ne our cumulative distribution

function, F (t), such that
F (t) = P (T ≤ t)

Therefore F (t) = 1 − S(t) = 1 − PG(t) = PB(t), with the usual de�nition of the probability density

function as f(t) = d
dtF (t). We also introduce a hazard function, µ(t), such that

µ(t) = lim
h→0

P (T ≤ t+ h|T > t)

h

We therefore interpret this as the instantaneous default rate for an individual who has not defaulted up
to time t. We also have that µ(t) = − d

dt log(S(t)) = − d
dt log(PG(t)). De�ning the cumulative hazard rate

as

M(t) =

tˆ

0

µ(s)ds

it therefore follows that S(t) = PG(t) = exp(−M(t)). Finally the log-odds score which was previously

de�ned as score(q) = log
(
PG(t)
PB(t)

)
, is such that

score(q) = − log (exp (M(t))− 1)

For our data set we have a number of records where the accounts are closed prior to observing a default.
We aim to estimate our survivor function, based on our data in the presence of right-censoring using the
Kaplan-Meier estimate.

5.5.1 Kaplan-Meier Estimate

Suppose we have n independently and identically distributed individuals who take out a credit product,
but due to the presence of right-censoring we only observe r defaults. If we let t1 < t2 < ... < tk be the
ordered default times, with k ≤ r so that it's possible for more than one account to default at the same
time, then we de�ne dj to be the number of defaults that occur at tj , such that

∑k
j=1 dj = r. We de�ne

cj to be the censoring time within the interval [tj , tj+1), such that the numbered of censored observations
is n− r. We de�ne

nj = n−
∑
i≤j−1

ci −
∑
i≤j−1

di

to be the number of loans still outstanding at time tj . The maximum likelihood estimate for our survivor
function is de�ned as

P̂G(t) = Ŝ(t) =
∏
j:tj≤t

(
1− dj

nj

)
(5.1)

We also de�ne the maximum likelihood estimate of the hazard function µj to be µ̂j =
dj
nj
. An estimate

of the standard error of the Kaplan-Meier estimate is given as

se
{
P̂G(t)

}
= se

{
Ŝ(t)

}
= Ŝ(t)

√√√√∑
tj≤t

dj
nj (nj − dj)

(5.2)



CHAPTER 5. HOMOGENEOUS TIME DEPENDENT DATA 39

which is known as Greenwood's formula [18]. Using this we are able to apply the central limit theorem
as n → ∞ to construct con�dence intervals. We plot our Kaplan-Meier estimate for our data in Figure
5.8.

Figure 5.8: Kaplan-Meier estimate. Con�dence intervals for the empirical survivor function are shown as
dotted lines.

Akrita [15] outlines two di�erent methods to bootstrap a Kaplan-Meier estimate, citing the method
proposed by Efron [18] as providing asymptotically correct con�dence intervals. We shall bootstrap the
standard error and compare that with the result obtained using Greenwood's formula.

5.5.2 Bootstrapping the Kaplan-Meier estimate

We construct a Kaplan-Meier estimate for our data and compare its standard error with that obtained
by Greenwood's formula. Suppose our data set x is such that it is drawn from an unknown probability
distribution F and x = {(x1, D1), ..., (xn, Dn)} where xi corresponds to the month an individual either
defaults or is censored and where we de�ne Di = 1 if individual i defaults and Di = 0 if they are
right-censored.

Efron [12, p.64] begins by making the following - arguably unrealistic - assumptions about the data.
We suppose that the real lifetime X0

i of each credit product is selected randomly according to the survival
curve

S(t) = Pr{X0
i > t}

and a censoring time Wi is independently selected according to another survival curve

R(t) = Pr{Wi > t}

We then observe Xi = min{X0
i ,Wi} and

Di =

{
1 Xi = X0

i

0 Xi = Wi

The true survivor function S(t) is then given as the product of the survivor curves for the censored and
uncensored observations, denoted R(t) = Pr(W > t) and S0(t) = Pr(X0 > t), respectively.

A method to bootstrap the randomly censored data is to independently sample X0∗
i from Ŝ0 and W ∗i

from R̂, and de�ne X∗i = min(X0∗
i ,W

∗
i ). A more intuitive method, which avoids the above assumptions,

is to directly sample pairs of data points (xi, Di) from x = {(x1, D1), ..., (xn, Dn)}. In actual fact, Efron
[18, p.314] demonstrates that both methods yield the same result. Our algorithm then proceeds as follows

1. Select B independent bootstrap samples x∗1,x
∗
2, ...,x

∗
B, each consisting of n pairs drawn with re-

placement from the observed data set x = {(x1, D1), ..., (xn, Dn)}.
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2. Evaluate the bootstrap replication corresponding to each bootstrap sample

Ŝ∗b (t) =
∏
j:tj≤t

(
1−

d∗j
n∗j

)
for b = 1, 2, ..., B

3. Estimate the standard error by the sample standard deviation of the B replications

ŝeB(t) =


∑B
b=1

{
Ŝ∗b (t)− Ŝ∗(t)

}2

B − 1


1
2

where Ŝ∗(t) = 1
B

∑B
b=1 Ŝ

∗
b (t) and

Here t = 8, ..., 40 corresponds to the relative months that the accounts either defaulted or were right-
censored. We compare our bootstrapped standard error using B = 100 with that obtained using Green-
wood's formula in Table 5.5 [Appendix 7.15-7.16].

t = 10 15 20 25 30 35 40

Ŝ(t) 0.989 0.953 0.913 0.883 0.863 0.843 0.834
ŝeBoot 0.001470 0.003241 0.004337 0.004708 0.005348 0.005629 0.005489
ŝeGreen 0.001547 0.003110 0.004145 0.004725 0.005071 0.005395 0.005527

Table 5.5: The Standard Error of the Kaplan-Meier curve for our account data using B = 100.

As might be expected there is a small discrepancy in the values for the standard error produced using
both estimates. Here we used a relatively small value for B. This was due to considerable computing
constraints due to the large data set which we are dealing with. Nevertheless, the data in Table 5.5 does
provide a demonstration of the power of the bootstrap algorithm.

One of the problems with the above methodology is that the data is not continuous and is grouped
by month. A potential solution is to use what is referred to as the actuarial assumption. This assumes
that the losses to censorship occur uniformly over the month. We therefore adjust our value nj to n

′

j

using the following transition

n
′

j = n−
∑
i≤j−1

ci −
∑
i≤j−1

di −
cj
2

Our maximum likelihood estimate for our survivor function is then de�ned as

Ŝ
′
(t) =

∏
j:tj≤t

(
1− dj

n
′
j

)

So far we have assumed that the individuals within our study are independently identically distribu-
tions. However, we know this is not true. We could consider the case of an inhomogeneous population,
de�ned by a series of explanatory variables. For our data set these would be the characteristics of each
borrower, for example their age or employment status. Lyn Thomas [7, p.256] outlines how we might
apply the Cox's Proportional Hazards model within the context of credit scoring, comparing this with
logistic regression models [16]. This falls beyond the scope of this project yet remains is an interesting
area of further research.



Chapter 6

Conclusion

6.1 Overview

We have demonstrated the power of the bootstrap methodology and some of its many applications within
the context of credit scoring. Bootstrapping was used to generate con�dence intervals to compare score
cards and we have provided some indication of the advantages of such methods over the more conventional
Mann-Whitney U Statistic. In particular, the simplicity of the bootstrap algorithm was emphasised. Two
di�erent methods to bootstrap AUC were considered, before concluding that the �rst method, where we
build just one model and test its performance on B bootstrapped test data sets, is more appropriate for
our purposes.

When comparing score cards we proposed a solution based on testing two di�erent models on indepen-
dent data sets, as shown in Figure 6.1. We divided this into two hypothesis tests, before demonstrating
some of the ways in which this methodology breaks down.

y → AUC1

↗ ↗
Data Set → training

↘ ↘
z → AUC2

Figure 6.1: Proposed methodology to compare score cards

We also explored four di�erent methods to bootstrap AUC, before concluding that the percentile
bootstrap method is superior due to its invariance to transformations and its ability to adjust for corre-
lation between score cards built on the same data set. Another interesting application of the bootstrap
methodology is when estimating AUC in the case a limited data set.

The e�ect of the number of bootsamples on the estimate for the mean and standard error was also
explored. Furthermore, the time dependent element of the credit scoring data set was highlighted by
comparing the AUCs found by testing a model on the �rst and last quarter of the data set. This is known
as backtesting and forecasting, respectively. The corresponding ROC curves are shown in Figure 6.2.

We moved on to study how we might �t a �rst order auto regressive model to default rates, before
analysing two di�erent bootstrapping methods. The �rst bootstrapping residuals and the second using
the block bootstrapping methods. We concluded by researching elements of survival analysis and how
we might bootstrap the Kaplan Meier curve within the context of credit scoring. A comparison between
the bootstrap estimate for the standard error and that obtained using Greenwood's formula were found
to be relatively similar.

41
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Figure 6.2: AUC when backtesting is 0.7533052 but only 0.5664593 when forecasting.

6.2 Discussion

The presented report highlights just some of the di�erent ways in which the algorithms were tested and
implemented. It was originally believed by the author that testing two di�erent models on di�erent
data sets could have provided an innovative solution to the problem of comparing two di�erent models
AUC. It was only after the algorithms were implemented that the method broke down. This led to the
consideration of default rates.

Simulated data also was used prior to implementing a number of the algorithms. This has the
advantage that we can control the parameters and therefore compare the expected result with the actual
result. We started by considering an environment where

yi,t = α+ βxi + γei + kt + εi

Here α, β and γ are constants and yi,t is the time dependent probability of default. We de�ne xi ∼ N(0, 1),
ei ∼ N(0, σ2

e), εi ∼ N(0, σ2
ε), where σe and σε are some unknown standard deviations. The last term, εi,

is the unknown error term and kt represents changes in the macro-economic environment.
We can �nd the expected value of yi,t as follows:

E(yi,t) = E(α+ βxi + γei + kt + εi) = α+ βE(xi) + γE(ei) + kt

Di�erent functions for kt were considered, for example, a step function. This aimed to model a
situation where there is a sudden change in the macro-economic environment, such as the failure of a major
bank. This work provided the basis on which modeling default rates using a �rst-order autoregressive
process was based and prompted the study of block bootstrapping methods.

6.3 Further Work

Much more work is still to be done exploring the bootstrap methodology. With more time we could
fully develop some of the time dependent models. In particular, we could develop a Cox's Proportional
Hazards model, for the case of an inhomogeneous population. It would also be interesting to implement
the Mann-Whitney U Statistic and compare the results obtained with that obtained using bootstrapping.

We might also like to build on some of the work relating to survival analysis. Whilst it is clear we
can model default rates using the Kaplan Meier estimate, it would be interesting to demonstrate some of
the reasons why this might be useful.
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Appendix

A selection of some of the more important R code is included below. This is by no means an exhaustive
list of all computing code used for this report.

7.1 One Sample Bootstrap algorithm

bootstrap <- function(x,B) {
bootreplications <-NULL
n=length(x)
stat = mean(x)
#Calculate the statistic of interest

cat("Mean of original sample=",stat ,"\n")
for (i in 1:B) {

bootsample <- sample(x,replace="TRUE")
bootreplications[i] <- mean(bootsample)

}
meanbootstrap = mean(bootreplications)
cat("Estimated bootstrap mean =",meanbootstrap ,"\n")
#Display the estimated mean for the statistic

varbootstrap = var(bootreplications)
#calculate the variance of the bootstrap replications

sebootstrap = sqrt(varbootstrap)
#calculate the standard error of the bootstrap replications

cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
#Display the estimated standard error for the statistic

hist(bootreplications)
hist(x)

}
x <- rnorm (25,0,1)
bootstrap(x ,200)

7.2 Building a basic credit score card

x <- NULL
y <- NULL
yp1 <- NULL
yp2 <- NULL
yp3 <- NULL
setwd("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata <-read.delim("ordered_data_cc_app.txt")
attach(ccdata)
ccdata$EMPLOY_STATUS_EM <- as.numeric (( EMPLOY_STATUS =="EM"))
ccdata$EMPLOY_STATUS_HO <- as.numeric (( EMPLOY_STATUS =="HO"))
ccdata$EMPLOY_STATUS_RE <- as.numeric (( EMPLOY_STATUS =="RE"))
ccdata$EMPLOY_STATUS_SE <- as.numeric (( EMPLOY_STATUS =="SE"))
ccdata$EMPLOY_STATUS_ST <- as.numeric (( EMPLOY_STATUS =="ST"))
ccdata$TENURE_CT <- as.numeric (( TENURE =="CT"))
ccdata$TENURE_HO <- as.numeric (( TENURE =="HO"))
ccdata$TENURE_LP <- as.numeric (( TENURE =="LP"))
ccdata$TENURE_PT <- as.numeric (( TENURE =="PT"))
ccdata$TENURE_B <- as.numeric (( TENURE ==""))
ccdata$APPLICATION_CHANNEL_C <- as.numeric (( APPLICATION_CHANNEL =="Cold Calls"))
ccdata$APPLICATION_CHANNEL_I <- as.numeric (( APPLICATION_CHANNEL =="Internet"))
ccdata$APPLICATION_CHANNEL_M <- as.numeric (( APPLICATION_CHANNEL =="Mail"))
ccdata$APPLICATION_CHANNEL_O <- as.numeric (( APPLICATION_CHANNEL =="Other"))
ccdata$ageq1 <- as.numeric ((age <=26))
ccdata$ageq2 <- as.numeric ((26<age & age <=33))
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ccdata$ageq3 <- as.numeric ((33<age & age <=35))
ccdata$ageq4 <- as.numeric ((35<age & age <=42))
ccdata$ageq5 <- as.numeric ((42<age & age <=81))
ccdata$MONTHS_AT_ADDRESS1 <- as.numeric (( MONTHS_AT_ADDRESS <=24))
ccdata$MONTHS_AT_ADDRESS2 <- as.numeric ((24< MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS <=54))
ccdata$MONTHS_AT_ADDRESS3 <- as.numeric ((54< MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS <=91))
ccdata$MONTHS_AT_ADDRESS4 <- as.numeric ((91< MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS <=125))
ccdata$MONTHS_AT_ADDRESS5 <- as.numeric ((125< MONTHS_AT_ADDRESS & MONTHS_AT_ADDRESS <=780))
woe <- function(x,y) {

nn<-y
n1<-y
woe <-y
for (i in 1: length(x)) {

nn[i]<-sum(x==x[i])
n1[i]<-sum(y*(x==x[i]))
if (n1[i]==0) {

nn[i]<-nn[i]+1
n1[i]<-1

}
if (n1[i]==nn[i]) {

n1[i]<-n1[i]-1
}

}
woe <-log((nn-n1)/n1)
woe

}
ccdata <- ccdata[MONTHS_AT_ADDRESS <428,]
### Remove Outliers

leng <-length(t(ccdata ))/length(ccdata)
len <-length(ccdata)
roc <- function(y, s) {

yav <- rep(tapply(y, s, mean), table(s))
rocx <- cumsum(yav)
rocy <- cumsum (1 - yav)
area <- sum(yav * (rocy - 0.5 * (1 - yav )))
x1 <- c(0, rocx)/sum(y)
y1 <- c(0, rocy)/sum(1 - y)
auc <- area/(sum(y) * sum(1 - y))
print(auc)

}
roc_plot <- function(y, s) {

yav <- rep(tapply(y, s, mean), table(s))
rocx <- cumsum(yav)
rocy <- cumsum (1 - yav)
area <- sum(yav * (rocy - 0.5 * (1 - yav )))
x1 <- c(0, rocx)/sum(y)
y1 <- c(0, rocy)/sum(1 - y)
auc <- area/(sum(y) * sum(1 - y))
plot(x1,y1 ,"l", xlab ="F0 False positive rate", ylab = "F1 True positive rate")
title(main="ROC Curve", xlab ="F0 False positive rate", ylab = "F1 True positive rate", font.main= 4)

}
detach(ccdata)
## Building our general linear model

attach(ccdata)
nu<-sample(leng , floor(leng*.25), replace=FALSE)
cctest <- ccdata[nu ,]
cctrain <- ccdata[-nu ,]
cctestback <- ccdata [1: floor(leng*.25),]
cctrainback <- ccdata [(floor(leng*.25)+1): leng ,]
cctestfor <- ccdata [(leng -floor(leng*.25)+1): leng ,]
cctrainfor <- ccdata [1:(leng -floor(leng*.25)) ,]
detach(ccdata)
attach(cctrain)
glm1.out <- glm(good ~ ageq1 + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS_AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_I +
APPLICATION_CHANNEL_M, family = binomial("logit"))
detach(cctrain)
attach(cctest)
yp1 <- predict(glm1.out , cctest , type="response")
OriginalAUC <- roc(good ,yp1)
roc_plot(good ,yp1)
detach(cctest)
summary(glm1.out)

7.3 Bootstrapping Con�dence Intervals

B = 1000
B2 = 200
## Using the model in Appendix 7.2.2 we generate four different confidence intervals

bootauc1 <- NULL
bootauc2 <- NULL
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Z<-vector("numeric")
se<-vector("numeric")
for (i in 1:B) {

attach(cctest)
nx<-sample(floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot <- cctest[nx ,]
detach(cctest)
attach(cctestboot)
yp1 <- predict(glm1.out , cctestboot , type="response")
bootauc1[i] <- roc(good ,yp1)
detach(cctestboot)
## For bootstrap -t confidence intervals - create the second bootstrap layer

for(j in 1:B2) {
attach(cctestboot)
nx1 <-sample(floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot2 <- cctestboot[nx1 ,]
detach(cctestboot)
attach(cctestboot2)
yp2 <- predict(glm1.out , cctestboot2 , type="response")
bootauc2[j] <- roc(good ,yp2)
detach(cctestboot2)

}
se[i]=sqrt(var(bootauc2 ))
Z[i]<-(bootauc1[i]-OriginalAUC)/se[i]

}
meanbootstrap1 = mean(bootauc1)
#calculate the mean of the bootstrap replications

varbootstrap1 = var(bootauc1)
#calculate the variance of the bootstrap replications

sebootstrap1 = sqrt(varbootstrap1)
#calculate the standard error of the bootstrap replications

cat("Estimated bootstrap standard error for the model =",sebootstrap1 ,"\n")
#Display the estimated standard error for the statistic

cat("Mean of the bootstrap of the model =", meanbootstrap1 ,"\n")
#Display the mean of the bootstrap replications

hist(bootauc1)
#plot a histogram

stu <- qt(0.975 ,df=floor(leng*0.25) -1)
gaus <- qnorm (0.975)
#95% CI on the bootstrap

lower1 = OriginalAUC - stu * (sebootstrap1)
upper1 = OriginalAUC + stu * (sebootstrap1)
cat("95% upper student -t Confidence Interval for the model =",upper1 ,"\n")
cat("95% lower student -t Confidence Interval for the model =",lower1 ,"\n")
#95% CI on the bootstrap

lower2 = OriginalAUC - gaus * (sebootstrap1)
upper2 = OriginalAUC + gaus * (sebootstrap1)
cat("95% upper Gaussian Normal Confidence Interval for the model =",upper2 ,"\n")
cat("95% lower Gaussian Normal Confidence Interval for the model =",lower2 ,"\n")
## Confidence intervals using bootstrap -t

Z<-sort(Z)
k<-ceiling (0.025*(B+1))
t1<-Z[k]
t2<-Z[B+1-k]
upper3 = OriginalAUC - t1 * (sebootstrap1)
lower3 = OriginalAUC - t2 * (sebootstrap1)
cat("Lower bootstrap -t Confidence Interval for the model =",lower3 ,"\n")
cat("Upper bootstrap -t Confidence Interval for the model =",upper3 ,"\n")
## Confidence intervals using percentiles

bootaucsort <-sort(bootauc1)
k<-ceiling (0.025*(B+1))
p1<-bootaucsort[k]
p2<-bootaucsort[B+1-k]
upper4 = p2
lower4 = p1
cat("Lower percentile Confidence Interval for the model =",lower4 ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper4 ,"\n")

7.4 Number of Bootsamples

K=1000
bootauc2 <- matrix(data=0,nrow=K,ncol=K)
bootmean <-NULL
bootse <-NULL
for (B in 1:K) {

bootauc1 <- NULL
for (i in 1:B) {

attach(cctest)
nx<-sample(floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot <- cctest[nx ,]
detach(cctest)
attach(cctestboot)
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yp1 <- predict(glm1.out , cctestboot , type="response")
bootauc1[i] <- roc(good ,yp1) detach(cctestboot)

}
bootauc2 [1:B,B] <- bootauc1
bootmean[B] <- mean(bootauc1)
bootse[B] <- sqrt(var(bootauc1 ))

}
plot(bootmean ,y,"l")
plot(bootse ,y,"l")

7.5 Limited data set

sam <- sample(leng , 1000, replace=FALSE)
ccdata <- ccdata[sam ,]
## Reducing the data set size

leng <-length(t(ccdata ))/length(ccdata)
len <-length(ccdata)
## Model

attach(ccdata)
glm1.out <- glm(good ~ ageq1 + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS_AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_I +
APPLICATION_CHANNEL_M, family = binomial("logit"))
yp1 <- predict(glm1.out , ccdata , type="response")
OriginalAUC <- roc(good ,yp1)
roc_plot(good ,yp1)
detach(ccdata)
B = 1000
bootauc1 <- NULL
bootauc2 <- NULL
for (i in 1:B) {

attach(ccdata)
nx<-sample(leng , leng , replace=TRUE)
ccdataboot <- ccdata[nx ,]
cctestboot <- ccdataboot [1: floor(leng*.25),]
cctrainboot <- ccdataboot [(floor(leng*.25)+1): leng ,]
detach(ccdata)
attach(cctrainboot)
glm1B.out <- glm(good ~ ageq1 + ageq2 + ageq3 + ageq4 + MONTHS_AT_ADDRESS1 + MONTHS_AT_ADDRESS2 +
MONTHS_AT_ADDRESS3 + MONTHS_AT_ADDRESS4 + TENURE_CT + TENURE_HO + TENURE_PT + EMPLOY_STATUS_EM +
EMPLOY_STATUS_HO + EMPLOY_STATUS_RE + EMPLOY_STATUS_SE + APPLICATION_CHANNEL_C + APPLICATION_CHANNEL_I +
APPLICATION_CHANNEL_M, family = binomial("logit"))
yp1B <- predict(glm1B.out , cctrainboot , type="response")
bootauc1[i] <- roc(good ,yp1B)
detach(cctrainboot)
attach(cctestboot)
yp2B <- predict(glm1B.out , cctestboot , type="response")
bootauc2[i] <- roc(good ,yp2B)
detach(cctestboot)
}

sum=0
for(i in 1:B){

sum = sum + (1/B)*((1-1/exp (1))*bootauc2[i]+ (1/exp (1))*bootauc1[i])
}
cat("AUC for the model when tested on itself =",OriginalAUC ,"\n")
cat("Estimated bootstrapped AUC for the model =",sum ,"\n")

7.6 Hypothesis test - distributional form

bootstrap.disform <- function(z,y,B){
meanz <- mean(z)
cat("Mean of original sample from dataset z =",meanz ,"\n")
meany <- mean(y)
cat("Mean of original sample from dataset y =",meany ,"\n")
x<-c(z,y)
stat <- meanz - meany
cat("Statistic of interest for the paired dataset =",stat ,"\n")
m=length(z)
r=length(y)
bootreplications <- NULL
zstar <- NULL
ystar <- NULL
for(i in 1:B){

bootsample <- sample(x,replace="TRUE")
for(j in 1:m){

zstar[j]<-bootsample[j]
}
for(j in (m+1):(m+r)){

ystar[j-m]<-bootsample[j]
}
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bootreplications[i] <- mean(zstar)-mean(ystar)
}
if(stat <0) stat <-stat*-1
ASL <- NULL
for(i in 1:B){

if(stat >0) if(bootreplications[i]>=stat) ASL[i]<-1
if(stat >0) if(bootreplications[i]<stat) ASL[i]<-0
if(stat <=0) if(bootreplications[i]<=stat) ASL[i]<-1
if(stat <=0) if(bootreplications[i]>stat) ASL[i]<-0

}
ASLboot = sum(ASL)/B
cat("Achieved Significance Level =",ASLboot ,"\n")
hist(bootreplications)

}
z <- rnorm (25 ,0.65 ,0.1)
y <- runif (25 ,0 ,1.4)
bootstrap.disform(z,y ,1000)

7.7 Hypothesis test - signi�cant di�erence

attach(ccdata)
nu<-sample(leng , floor(leng*.25), replace=FALSE)
cctest <- ccdata[nu ,]
cctrain <- ccdata[-nu ,]
detach(ccdata)
attach(cctrain)
glm1.out <- glm(good ~ ageq1 + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO,
family = binomial("logit"))
glm2.out <- glm(good ~ TENURE_HO , family = binomial("logit"))
detach(cctrain)
attach(cctest)
yp1 <- predict(glm1.out , cctest , type="response")
yp2 <- predict(glm2.out , cctest , type="response")
OriginalAUC1 <- roc(good ,yp1)
OriginalAUC2 <- roc(good ,yp2)
AUCdiff <-OriginalAUC1 - OriginalAUC2
roc_plot(good ,yp1)
roc_plot(good ,yp2)
detach(cctest)
B = 1000
bootauc1 <- NULL
bootauc2 <- NULL
bootaucdiff <- NULL
for (i in 1:B) {

attach(cctest)
nx<-sample(floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot <- cctest[nx ,]
detach(cctest)
attach(cctestboot)
yp1 <- predict(glm1.out , cctestboot , type="response")
yp2 <- predict(glm2.out , cctestboot , type="response")
bootauc1[i] <- roc(good ,yp1)
bootauc2[i] <- roc(good ,yp2)
bootaucdiff[i] <- bootauc1[i]-bootauc2[i]
detach(cctestboot)

}
meanbootstrap = mean(bootaucdiff)
cat("Mean of the bootstrap of differences =", meanbootstrap ,"\n")
cat("AUC for model 1 =", OriginalAUC1 ,"\n")
cat("AUC for model 2 =", OriginalAUC2 ,"\n")
cat("AUC difference =", AUCdiff ,"\n")
hist(bootaucdiff ,main="Histogram of the difference in AUCs")
#plot a histogram

## Confidence intervals using percentiles

bootaucsort <-sort(bootaucdiff)
k<-ceiling (0.025*(B+1))
p1<-bootaucsort[k]
p2<-bootaucsort[B+1-k]
upper4 = p2
lower4 = p1
cat("Lower percentile Confidence Interval for the model =",lower4 ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper4 ,"\n")

7.8 Hypothesis test - insigni�cant di�erence

attach(ccdata)
ccdata$ranm <- rnorm(leng ,0 ,0.1)
## Add 's an extra random term to the data sampled from the Normal (0 ,0.1) distribution

nu<-sample(leng , floor(leng*.25), replace=FALSE)
cctest <- ccdata[nu ,]
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cctrain <- ccdata[-nu ,]
detach(ccdata)
attach(cctrain)
glm1.out <- glm(good ~ ageq1 + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO,
family = binomial("logit"))
glm2.out <- glm(good ~ ageq1 + MONTHS_AT_ADDRESS2 + MONTHS_AT_ADDRESS3 + TENURE_CT + TENURE_HO
+ ranm , family = binomial("logit"))
## The second model is identical apart from the extra random term

detach(cctrain)
attach(cctest)
yp1 <- predict(glm1.out , cctest , type="response")
yp2 <- predict(glm2.out , cctest , type="response")
OriginalAUC1 <- roc(good ,yp1)
OriginalAUC2 <- roc(good ,yp2)
AUCdiff <-OriginalAUC1 - OriginalAUC2
roc_plot(good ,yp1)
roc_plot(good ,yp2)
detach(cctest)
B = 1000
## Build just one model with different style of confidence intervals ...

bootauc1 <- NULL
bootauc2 <- NULL
bootaucdiff <- NULL
for (i in 1:B) {

attach(cctest)
nx<-sample(floor(leng*.25), floor(leng*.25), replace=TRUE)
cctestboot <- cctest[nx ,]
detach(cctest)
attach(cctestboot)
yp1 <- predict(glm1.out , cctestboot , type="response")
yp2 <- predict(glm2.out , cctestboot , type="response")
bootauc1[i] <- roc(good ,yp1)
bootauc2[i] <- roc(good ,yp2)
bootaucdiff[i] <- bootauc1[i]-bootauc2[i]
detach(cctestboot)

}
meanbootstrap = mean(bootaucdiff)
cat("Mean of the bootstrap of differences =", meanbootstrap ,"\n")
cat("AUC for model 1 =", OriginalAUC1 ,"\n")
cat("AUC for model 2 =", OriginalAUC2 ,"\n")
cat("AUC difference =", AUCdiff ,"\n")
hist(bootaucdiff ,main="Histogram of the difference in AUCs")
bootaucsort <-sort(bootaucdiff)
k<-ceiling (0.025*(B+1))
p1<-bootaucsort[k]
p2<-bootaucsort[B+1-k]
upper4 = p2
lower4 = p1
cat("Lower percentile Confidence Interval for the model =",lower4 ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper4 ,"\n")

7.9 Generating an AR(1) model

Y <- NULL
Y[1] = 0
for(i in 2:50){

Y[i] <- 0.8*Y[i-1]+ rnorm (1,0,0.1)
}
ar(Y,order.max=1)
acf(Y,main="Autocorrelation function")

7.10 Bootstrapping residuals

residualboot <- function(Y) {
n=length(Y)
ybar <- mean(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
}
for(i in 1:(n-1)){

Z[i] <- X[i]
}
phi_hat <- solve(t(Z)%*%Z)*t(Z)%*%z
ep <- NULL
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for(i in 2:n){
ep[i-1] <- X[i] - phi_hat*X[i-1]

}
B=1000
phiboot <- NULL leng <-length(ep) epboot <- NULL
for(i in 1:B){

X[1] <- Y[1] - ybar
nu <- sample(leng ,leng ,replace=TRUE)
epboot <- ep[nu]
for(j in 2:n){

X[j] <- phi_hat*X[j-1] + epboot[j-1]
}
Z<-NULL
z<-NULL
for(j in 2:n){

z[j-1] <- X[j]
}
for(j in 1:(n-1)){

Z[j] <- X[j]
}
phiboot[i] <- solve(t(Z)%*%Z)*t(Z)%*%z

}
hist(phiboot)
meanbootstrap = mean(phiboot)
var(phiboot)
sebootstrap = sqrt(var(phiboot ))
phi_hat
cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
cat("Mean of the bootstrap for phihat =",meanbootstrap ,"\n")
## Confidence intervals using percentiles

phisort <-sort(phiboot)
k<-ceiling (0.025*(B+1))
p1<-phisort[k]
p2<-phisort[B+1-k]
upper = p2
lower = p1
cat("Lower percentile Confidence Interval for the model =",lower ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper ,"\n")

}

7.11 Moving block bootstrap

bootstrap.movingblock <- function(Y,B,l){
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
## Find my residuals

Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
}
for(i in 1:(n-1)){

Z[i] <- X[i]
}
phi_hat <- solve(t(Z)%*%Z)*t(Z)%*%z
cat("Estimate for phi from the original sample=",phi_hat ,"\n")
k = floor(n/l)
for (i in 1:B) {

startpt=sample (1:(n-l+1),k,replace="TRUE")
for (j in 1:k) {

blockbootsample [((j-1)*l+1):(j*l)] = Y[( startpt[j]):( startpt[j]+l-1)]
}
X <- NULL
for(p in 1:(k*l)){

X[p] <- blockbootsample[p]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:(k*l)){

z[q-1] <- X[q]
}
for(q in 1:(k*l-1)){

Z[q] <- X[q]
}
bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z
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}
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)*sqrt(k*l/n)
#calculate the standard error of the bootstrap replications

cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
#Display the estimated standard error for the statistic

cat("Mean of the bootstrap for phihat =",meanbootstrap ,"\n")
#Display the mean of the bootstrap difference of means

hist(bootreplications , main="Moving Block Bootstrap")
## Confidence intervals using percentiles

phisort <-sort(bootreplications)
ku<-ceiling (0.025*(B+1))
p1<-phisort[ku]
p2<-phisort[B+1-ku]
upper = p2
lower = p1
cat("Lower percentile Confidence Interval for the model =",lower ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper ,"\n")

}
bootstrap.movingblock(Y,1000 ,5)

7.12 Non-overlapping block bootstrap

bootstrap.nonoverlapping <- function(Y,B,l) {
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
}
for(i in 1:(n-1)){

Z[i] <- X[i]
}
phi_hat <- solve(t(Z)%*%Z)*t(Z)%*%z
cat("Estimate for phi from the original sample=",phi_hat ,"\n")
k = floor(n/l)
startpt <- NULL
for (i in 1:B) {

Q <- c(1:(k*l))
for(g in 1:k){

startpt[g] = Q[((g-1)*l+1)]
}
startptrand=sample(startpt ,k,replace="TRUE")
for (j in 1:k) {

blockbootsample [((j-1)*l+1):(j*l)] = Y[( startptrand[j]):( startptrand[j]+l-1)]
}
X <- NULL
for(p in 1:(k*l)){

X[p] <- blockbootsample[p]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:(k*l)){

z[q-1] <- X[q]
}
for(q in 1:(k*l-1)){

Z[q] <- X[q]
}
bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z

}
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)*sqrt(k*l/n)
cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
cat("Mean of the bootstrap for phihat =",meanbootstrap ,"\n")
hist(bootreplications , main="Non -overlapping Block Bootstrap")
phisort <-sort(bootreplications)
ku<-ceiling (0.025*(B+1))
p1<-phisort[ku]
p2<-phisort[B+1-ku]
upper = p2
lower = p1
cat("Lower percentile Confidence Interval for the model =",lower ,"\n")
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cat("Upper percentile Confidence Interval for the model =",upper ,"\n")
}
bootstrap.nonoverlapping(Y,1000 ,5)

7.13 Circular block bootstrap

bootstrap.circular <- function(Y,B,l) {
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
}
for(i in 1:(n-1)){

Z[i] <- X[i]
}
phi_hat <- solve(t(Z)%*%Z)*t(Z)%*%z
cat("Estimate for phi from the original sample=",phi_hat ,"\n")
k = floor(n/l)
Y <- c(Y,Y)
for (i in 1:B) {

startpt=sample (1:n,k,replace="TRUE")
for (j in 1:k) {

blockbootsample [((j-1)*l+1):(j*l)] = Y[( startpt[j]):( startpt[j]+l-1)]
}
X <- NULL
for(p in 1:(k*l)){

X[p] <- blockbootsample[p]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:(k*l)){

z[q-1] <- X[q]
}
for(q in 1:(k*l-1)){

Z[q] <- X[q]
}
bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z

}
meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)*sqrt(k*l/n)
cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
cat("Mean of the bootstrap for phihat =",meanbootstrap ,"\n")
hist(bootreplications , main="Circular Block Bootstrap")
phisort <-sort(bootreplications)
ku<-ceiling (0.025*(B+1))
p1<-phisort[ku]
p2<-phisort[B+1-ku]
upper = p2
lower = p1
cat("Lower percentile Confidence Interval for the model =",lower ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper ,"\n")

}
bootstrap.circular(Y,1000 ,5)

7.14 Stationary block bootstrap

bootstrap.stationary <- function(Y,B,p){
bootreplications = NULL
bootsample = NULL
blockbootsample = NULL
ybar <- mean(Y)
n = length(Y)
X <- NULL
for(i in 1:n){

X[i] <- Y[i]-ybar
}
Z<-NULL
z<-NULL
for(i in 2:n){

z[i-1] <- X[i]
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}
for(i in 1:(n-1)){

Z[i] <- X[i]
}
phi_hat <- solve(t(Z)%*%Z)*t(Z)%*%z
cat("Estimate for phi from the original sample=",phi_hat ,"\n")
Y <- c(Y,Y)
for (i in 1:B) {

blockbootsample <- NULL
len = 0
while(len <n){

Q <- c(1:n)
L <- rgeom(1,p)
if(L == 0) L <- rgeom(1,p)
if(L == 0) L <- rgeom(1,p)
if(L == 0) L <- rgeom(1,p)
if(L == 0) L <- rgeom(1,p)
if(L == 0) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
if(L > n) L <- rgeom(1,p)
## to ensure L is between 0 and n

startpt = sample(Q,1)
extra <- NULL
extra <- Y[( startpt ):( startpt+L-1)]
blockbootsample <- c(blockbootsample ,extra)
len = length(blockbootsample)

}
len = length(blockbootsample)
X <- NULL
for(q in 1:len){

X[q] <- blockbootsample[q]-ybar
}
Z<-NULL
z<-NULL
for(q in 2:len){

z[q-1] <- X[q]
}
for(q in 1:(len -1)){

Z[q] <- X[q]
}
bootreplications[i] <- solve(t(Z)%*%Z)*t(Z)%*%z
}

meanbootstrap = mean(bootreplications)
varbootstrap = var(bootreplications)
sebootstrap = sqrt(varbootstrap)
cat("Estimated bootstrap standard error =",sebootstrap ,"\n")
cat("Mean of the bootstrap for phihat =",meanbootstrap ,"\n")
hist(bootreplications , main="Stationary Block Bootstrap")
phisort <-sort(bootreplications)
ku<-ceiling (0.025*(B+1))
p1<-phisort[ku]
p2<-phisort[B+1-ku]
upper = p2
lower = p1
cat("Lower percentile Confidence Interval for the model =",lower ,"\n")
cat("Upper percentile Confidence Interval for the model =",upper ,"\n")

}
bootstrap.stationary(Y ,1000 ,0.2)

7.15 Greenwood's formula

KapMeier <- function(t){
setwd("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata <-read.delim("ordered_data_cc_app.txt")
library(survival)
attach(ccdata)
vec <- cbind(stmt_rel_mth ,1-good)
N <- NULL
D <- NULL
n <- length(stmt_rel_mth)
for(j in 1:40){

value = 0
sum = 0
for(i in 1:n){

if(stmt_rel_mth[i]<j) sum=1 else sum=0
value = sum + value

}
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N[j] <- n - value
}
for(j in 1:41){

value = 0
sum = 0
for(i in 1:n){

if(stmt_rel_mth[i]<j) sum=1 else sum=0
if(good[i]<1) sum=sum*1 else sum=sum*0
value = sum + value

}
D[j] <- value

}
for(i in 1:41){

D[i] <- D[i+1]
}
D[41] <- 0
D
sum = 0
for(j in 2:39){

sum = sum + D[j]
D[j+1] <- D[j+1] - sum

}
product =1
for(i in 1:t){

product <-product*(1-(D[i]/N[i]))
}
S<-product

##Greenwoods forumla

sum = 0
for(i in 1:t){

sum = sum + (D[i]/(N[i]*(N[i]-D[i])))
}
Green <- S*sqrt(sum)
cat("S-hat =",S,"\n")
cat("Greenwood 's Standard Error =",Green ,"\n")
detach(ccdata)

}

7.16 Bootstrapping the Kaplan Meier Curve

BootKapMeier <- function(t,B){
setwd("C:/Users/Luke/Dropbox/Dissertation_new")
ccdata <-read.delim("ordered_data_cc_app.txt")
attach(ccdata)
vec <- data.frame(stmt_rel_mth ,1-good ,good)
n <- length(stmt_rel_mth)
Sboot <-NULL
detach(ccdata)
for(b in 1:B){

nu<-sample(n, n, replace=TRUE)
vecstar <- vec[nu ,]
attach(vecstar)
N <- NULL
D <- NULL
for(j in 1:40){

value = 0
sum = 0
for(i in 1:n){

if(stmt_rel_mth[i]<j) sum=1 else sum=0
value = sum + value

}
N[j] <- n - value

}
for(j in 1:41){

value = 0
sum = 0
for(i in 1:n){

if(stmt_rel_mth[i]<j) sum=1 else sum=0
if(good[i]<1) sum=sum*1 else sum=sum*0
value = sum + value

}
D[j] <- value

}
for(i in 1:41){

D[i] <- D[i+1]
}
D[41] <- 0
D
sum = 0
for(j in 2:39){

sum = sum + D[j]
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D[j+1] <- D[j+1] - sum
}
product =1
for(i in 1:t){

product <-product*(1-(D[i]/N[i]))
}
Sboot[b]<-product
detach(vecstar)

}
SE<-sqrt(var(Sboot ))
cat("Bootstrap Standard Error =",SE,"\n")

}
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