
Stochastic Simulations

March 18, 2012

Luke Kanczes

Abstract

The following report begins by generating pseudo-random numbers which we are then able to convert into

random variables from a speci�c distribution. We also explore the technique of Monte Carlo integration, exploring

di�erent methods with the objective of variance reduction. A smaller variance allows us to produce an answer to

the same degree of accuracy from a smaller simulation. We then explore Monte Carlo Markov Chain techniques,

in particular the Metropolis Hastings sampler which has the desired distribution in its equilibrium distribution.

1

1 Simulating from a speci�ed density

We are asked to consider the following density

f(x) ∝

 1
x(1−x) exp

[
− 1

2

(
3 + ln

(
x

1−x

))2]
0 < x < 1

0 otherwise
(1)

and devise and implement a simple, exact and e�cient algorithm for simulating from f(·).

Figure 1: Plot of f(x) up to proportionality as denoted in (1) [Appendix 5.1]

We �rst note that it is only possible to �nd the inverse of this function numerically, and therefore we are not able
to implement the Inversion algorithm. We potentially could implement either the Rejection algorithm or the Ratio of

Uniforms Algorithm to simulate from f(·).

1.1 Ratio of Uniforms

If we consider some function h such that h (·) ≥ 0 and
´
h < ∞, we then consider the following region de�ned in

(U, V) space:

Ch =

{
(u, v) |0 ≤ u ≤

√
h
(v
u

)}
If Ch has �nite area, and if (U, V) are uniform on Ch, then X = V

U has probability density function h´
h
. In other

words f(x) = h´
h
. If we consider f(x) as de�ned in (1) we might now wish to consider:

K

1ˆ

0

1

x(1− x)
exp

[
−1

2

(
3 + ln

(
x

1− x

))2
]
dx (2)

Where K is our constant of proportionality. We can estimate the value of this integral numerically in R using Monte

Carlo Simulations as in Section 2. As a guide we may use the built-in integrate function in R and �nd its value is
2.506628K with absolute error < 0.00019K [Appendix 5.2].

Since we know
´
f(x)dx ≈ 2.506628K we might want to de�ne K such that

K =

 1ˆ

0

1

x(1− x)
exp

[
−1

2

(
3 + ln

(
x

1− x

))2
]
dx

−1 ≈ (2.506628)
−1

(3)

and therefore
´
f(x)dx = 1.

We therefore de�ne our function h(x) as

h(x) =

 1
x(1−x) exp

[
− 1

2

(
3 + ln

(
x

1−x

))2]
0 < x < 1

0 otherwise
(4)

And de�ne f(x) as

f(x) =

 K
x(1−x) exp

[
− 1

2

(
3 + ln

(
x

1−x

))2]
0 < x < 1

0 otherwise
(5)

Where K is de�ned as in (3).

2

1.1.1 Algorithm

The Ratio of Uniforms algorithm proceeds as follows:

1. Find the bounding rectangle for Ch.

2. Generate (U1, U2) ∼ U(0, 1).

3. Set U = aU1, V = b+ (c− b)U2.

4. If U ≤
√
h
(
V
U

)
, set X = V

U , otherwise go to step 1.

1.1.2 Find the bounding rectangle

We are required to �nd a bounding rectangle for Ch. Such a rectangle will always exist provided h(x) and x2h(x) are
bounded in the domain of x. We consider Ch to be bounded by a, b and c, where we de�ne:

a = supx≥0
√
h(x)

b = infx≤0 x
√
h(x)

c = supx≥0 x
√
h(x)

For a we are required to �nd the supremum of
√
h(x) for x ≥ 0. Numerically we �nd that this is equal to 5.861968

at x = 0.01864552. Clearly b takes its in�mum at 0 for any value of x such that x ≤ 0. For c the supremum of x
√
h(x)

for x ≥ 0 is found numerically to be 0.2865048 when x = 0.1192146. [Appendix 5.3]
We therefore have a = 5.861968, b = 0 and c = 0.2865048.

1.1.3 Implement the Algorithm

We can now implement the Ratio of Uniforms algorithm to simulate from f(·). [Appendix 5.4]
The theoretical acceptance value is given as

Probability of accepting an X = Area(Ch)
Area of bounding rectangle

=
1
2

´
h(x)dx

a(c−b)

≈
1
2 ·2.506628

5.861968·0.2865048
≈ 0.74625

On implementing the algorithm with n = 10, 000 we obtain an actual acceptance probability of 0.7760547. Imple-
menting the algorithm again a second time, yields an acceptance probability of 0.7713603, the discrepancy between
values due to the nature of a stochastic process. Given the acceptance probability is fairly large we could consider this
a relatively e�cient algorithm.

1.2 Rejection Algorithm

Here we instead consider some probability density function g such that there exists ∃M > 0 with f
g < M <∞.

1.2.1 Algorithm

The Rejection algorithm proceeds as follows:

1. Generate Y = y ∼ g(·).

2. Generate U = u ∼ U(0, 1).

3. If u ≤ f(y)
Mg(y) set X = y.

4. Otherwise go to step 1.

1.2.2 Probability of acceptance

Here we note �rst that M = supx
f(x)
g(x) . The theoretical acceptance probability is given as

Probability of accepting an X =
´∞
−∞ h(y)g(y)dy

=
´∞
−∞

f(y)
Mg(y)g(y)dy

= 1
M

´∞
−∞ f(y)dy

= 1
M

We therefore wish to �nd a function g(x) such that M is as close to 1 as possible.

3

1.2.3 Implementing the algorithm

We shall implement our Rejection algorithm for two di�erent choices of g(x). [Appendix 5.6 & Appendix 5.8]

Uniform Distribution

If we consider the simple case of g(x) equivalent to the uniform distribution we are able to generate from f(x). However,
we should note that since M = 34.36266 [Appendix 5.5] our acceptance probability is only 1

34.36266 = 0.02910136 and
thus the algorithm is particularly ine�cient.

Beta distribution

If we instead consider the case when where g(x) takes the form of the Beta(1.5, 4) distribution we are again able
to generate from f(x). Here M = 29.99015 [Appendix 5.7] and therefore our acceptance probability is 1

29.99015 =
0.03334428 and thus the algorithm is still more ine�cient than that obtained using the Ratio of Uniforms, however
more e�cient than when using g(x) uniform.

Figure 2: Data simulated from f(·) for n = 100, 000 using the Ratio of Uniforms algorithm and the Rejection algorithm
using a Beta distribution

1.3 Pretesting Squeezing

Both the rejection and the ratio of uniforms methods use membership tests, which are computationally expensive to
evaluate. If we consider the Rejection algorithm we may be able to �nd some functions WL and WU which are less
computationally expensive to evaluate such that WL <

f
g < WU , ∀x. We can do similar with the Ratio of Uniforms

algorithm, however in both cases �nding such functions is di�cult due to the unusual form for the density function.

2 Monte Carlo Integration

We are required to estimate the value of an integral

1ˆ

0

1

x(1− x)
exp

[
−1

2

(
3 + ln

(
x

1− x

))2
]
dx (6)

In Section 1.1 we noted that when using the integrate function in R that this value is approximately 2.506628. We
shall use several di�erent methods and compare the solutions.

For φ a bounded function on (a, b), with 0 ≤ φ ≤ c we de�ne θ =
´ b
a
φ(x)dx =

´ b
a
φ1(x)f(x)dx, with f(x) =

1
b−a ,

xε(a, b).

2.1 Direct φ− f method

Here we estimate θ as

θ̂ = 1
n

∑n
i=1 φ1(Xi) Xi ∼ U(a, b)

= (b− a) 1n
∑n
i=1 φ(Xi)

Using θ as de�ned in (9), for Xi ∼ U(0, 1), we estimate θ̂ as

θ̂ =
1

n

n∑
i=1

1

Xi(1−Xi)
exp

[
−1

2

(
3 + ln

(
Xi

1−Xi

))2
]

(7)

4

We note E
(
θ̂
)
= θ and that the variance of this value is

var
(
θ̂
)

= (b− a)2 1
n2nvar (φ (X))

= 1
n

(
Ef
(
φ2(X)

)
− E2

f (φ(X))
)

= 1
n

(´ 1
0
φ2(x)dx− θ2

)
Using n = 100, 000 we estimate the value of θ as 2.505269. Running the algorithm again we estimate its value as

2.493166. [Appendix 5.9] The discrepancy in our estimate is to be expected due to the nature of a stochastic process.

2.1.1 Antithetic version

If we suppose that θ̂1 and θ̂2 are both unbiased estimators of θ with variances var
(
θ̂1

)
and var

(
θ̂2

)
then E

(
1
2

(
θ̂1 + θ̂2

))
=

θ and

var

(
1

2

(
θ̂1 + θ̂2

))
=

1

4
var
(
θ̂1

)
+

1

4
var
(
θ̂2

)
+

1

2
cov

(
θ̂1, θ̂2

)
If we suppose var

(
θ̂1

)
= var

(
θ̂2

)
then

var
(

1
2

(
θ̂1 + θ̂2

))
= 1

2var
(
θ̂1

)
+ 1

2cov
(
θ̂1, θ̂2

)
= 1

2var
(
θ̂1

)[
1 +

cov(θ̂1,θ̂2)√
var(θ̂1)var(θ̂2)

]
= 1

2var
(
θ̂1

) [
1 + corr

(
θ̂1, θ̂2

)]
If corr

(
θ̂1, θ̂2

)
is large and negative, var

(
1
2

(
θ̂1 + θ̂2

))
< var

(
θ̂1

)
. So for Xi ∼ U(0, 1), we can estimate θ as

θ̂∗ =
1

2n

n∑
i=1

(φ(Xi) + φ(1−Xi)) (8)

And we have var
(
θ̂∗
)
= 1

2var
(
θ̂1

) [
1 + corr

(
θ̂1, θ̂2

)]
. Using n = 100, 000 we estimate the value of θ as 2.505842.

Running the algorithm again we estimate its value as 2.528965. [Appendix 5.10]

2.1.2 Strati�ed Sampling

Here we estimate θ by breaking the integral up and performing Monte Carlo integration on each separately.

θ =

bˆ

a

φ(x)dx =

α1ˆ

α0=a

φ(x)dx+

α2ˆ

α1

φ(x)dx+ ...+

αk=bˆ

αk−1

φ(x)dx

If we consider our function, we �nd it achieves its maximum value at 34.36266 when x = 0.01864517 and the
majority of its density is between 0 and 0.3. Therefore, we might wish to divide our integral using values for αi as
given in Appendix 5.11 to obtain an improvement. Using n = 100, 000 we estimate the value of θ as 2.506135. Running
the algorithm again we estimate its value as 2.505751. However, using so many integrals is fairly ine�cient.

2.2 Hit or Miss Algorithm

Here we let U = ui ∼ U(a, b), V = vi ∼ U(0, c), i = 1, ..., n and de�ne

θ̃ = c(b− a) 1
n

n∑
i=1

I(vi ≤ φ(ui))

With a = 0, b = 1 and c = supx≥0
1

x(1−x) exp

[
− 1

2

(
3 + ln

(
x

1−x

))2]
= 34.36266 [Appendix 5.12]. We therefore

estimate θ̃ as

θ̃ =
34.36266

n

n∑
i=1

I

(
vi ≤

1

ui(1− ui)
exp

[
−1

2

(
3 + ln

(
ui

1− ui

))2
])

(9)

We note that I(V ≤ φ(U)) ∼ Bernoulli(P (V ≤ φ(U)) so E
(
θ̃
)
= θ and

var
(
θ̃
)

= c2 (b− a)2 1
n2nvar (I(V ≤ φ(U)))

= c2

n ((P (V ≤ φ(U)) (1− P (V ≤ φ(U)))

= c2

n

(
θ
c

(
1− θ

c

))
= θ

n (c− θ)

5

Using n = 100, 000 we estimate the value of θ as 2.545929. Running the algorithm again we estimate its value as
2.525999. [Appendix 5.13 & 5.14]

2.3 Importance Sampling

We instead could consider θ =
´
φ(x)f(x)dx =

´
φ(x) f(x)g(x) g(x)dx =

´
ψ(x)g(x)dx where ψ(x) = φ(x)f(x)

g(x) . We can

therefore estimate θ as

θ̂ =
1

n

n∑
i=1

ψ(Xi)

where X1, ..., Xn ∼ g(·) and ψ(x) = 1
g(x) ·

1
x(1−x) exp

[
− 1

2

(
3 + ln

(
x

1−x

))2]
.

We aim to �nd a function g(·) such that it mimics the shape of h(x) = φ(x)f(x). If we consider several di�erent
cases of the beta distribution we might observe that the Beta(1.5,22) distribution takes values for x = 0→ 1 and has

a similar shape to that of our probability density function. We are therefore able to estimate θ. The variance of θ̂ is
given as

var
(
θ̂
)

= 1
nvar (ψ (X))

= 1
nvar

(
φf(X)
g(X)

)
Therefore, we can minimise our variance by using a function g such that it mimics the shape of h = φf . Using

n = 100, 000 we estimate the value of θ as 2.50104. Running the algorithm again we estimate its value as 2.510881.
[Appendix 5.15]

Figure 3: The Beta(1.5,22) distribution [Appendix 5.16]

2.4 Comparison of the di�erent methods

We note that the variance of (9) is always greater than that of (7) and therefore we could argue that we should never
use the hit and miss algorithm.

Proof

var
(
θ̂
)
=

1

n

(ˆ 1

0

φ2(x)dx− θ2
)
≤ 1

n

(
c

ˆ 1

0

φ(x)dx− θ2
)

=
θ

n
(c− θ) = var

(
θ̃
)

We are able to improve on this further using the antithetic version, provided corr
(
θ̂1, θ̂2

)
is large and negative.

Furthermore, we could also use strati�ed sampling to reduce our variance further. Theoretically, we are able to reduce
our variance down to zero using importance sampling, provided our function g is such that it perfectly mimics the
shape of h = φf .

3 Metropolis-Hastings Sampler

The Metropolis-Hastings sampler is a type of Markov Chain Monte Carlo method (MCMC), which allows us to simulate
a markov chain using an iterative procedure, which has a equilibrium distribution equal to some target density.

3.1 Algorithm

We aim to sample from some density f(x) using a di�erent probability density q(x, y), satisfying
´
X q(x, y)dy = 1 for

all x. The algorithm proceeds as follows:

1. Start from an arbitrary X(0)

2. Given X(n) = x, generate a trial value Y = y from the probability density q(x, y).

6

3. De�ne α = min
(
f(y)q(y,x)
f(x)q(x,y) , 1

)
. If α = 1 then set X(n+1) = Y . If 0 < α < 1 then accept Y with probability α. If

Y is accepted then X(n+1) = Y ; else X(n+1) = X(n).

4. Replace n by n+ 1 and go to Step 2.

3.2 Implementing the Algorithm

We are required to consider some probability density q(x, y). We shall consider two di�erent choices for q(x, y),
adjusting both so as to have an acceptance rate of about 20%. We shall take a starting value of X(0) = 0.1 in both
cases since this value is close to where the majority of the density is.

3.2.1 Uniform distribution

Here we take our proposed new state y as y = x + W where x is our current state and W ∼ U(−α, α). Using
n = 100, 000 we adjust our algorithm and �nd that for W ∼ U(−0.33, 0.33) we estimate our acceptance probability as
0.1943839. [Appendix 5.17]

3.2.2 Normal distribution

Here we again take our proposed new state y as y = x +W where x is our current state and W ∼ N(0, ν). Using
n = 100, 000 we adjust our algorithm and �nd that for W ∼ N(0, 0.24) we estimate our acceptance probability as
0.2017039. [Appendix 5.18]

3.3 Adjusting the starting value

The Metropolis Hastings algorithm requires a large number of steps before it is judged to have converged. Often a
number of iterations at the beginning are deleted to allow burn-in, a period where it is assumed that the probability
density is settling down towards the true f(x). For the purposes of this investigation we shall consider just the case
of q(x, y) normal.

We start by analysing the di�erence between the autocorrelation sequences for the Metropolis Hastings algorithm
and the Ratio of Uniforms algorithm. The autocorrelation is de�ned as the cross-correlation of a signal with itself,
which allows us to �nd patterns which might be hidden within noise. By de�nition the autocorrelation of a continuous
white noise process has a value of 1 at lag 0 and has a value of zero for all other values. If we look at Figure 4 we
can see the Ratio of Uniforms algorithm follows this approximate structure. This is unsurprising given that each of
the observations are independent. However the Metropolis Hastings algorithm for X(0) = 0.9 has a clear structure up
until lag 18. We aim to remove this structure so our Metropolis Hastings autocorrelation structure resembles that for
the Ratio of Uniforms algorithm. Interestingly the Metropolis Hastings algorithm for X(0) = 0.4 has a structure up
until lag 15, and has a more linear decline.

Figure 4: Autocorrelation Sequence for the Ratio of Uniforms algorithm and Metropolis Hastings with X(0) = 0.9,
X(0) = 0.4 and n = 1000

We can adjust our Metropolis Hastings algorithm to take every (τ+1)th point as a random variable from our target
density, for example for τ = 5 we'll take the values 6, 11, 16, ..., we can then compare the autocorrelation function this
produces with that obtained using the Ratio of Uniforms algorithm. In Figure 5 we can see that using τ = 5 fails to
produce a purely random sequence, however using τ = 15 we are able to produce an autocorrelation sequence similar
to that obtained using the Ratio of Uniforms Algorithm. [Appendix 5.20]

We can also consider the path the markov chain takes as we alter the starting value. If we start by investigating
X(0) = 0.9 we can compare the results with a value such as X(0) = 0.4. We might also like to note that if we select a
value for X(0) which is outside our range the algorithm produces an error.

In Figure 6 we can see that the markov chain quickly falls from its starting value at X(0) = 0.9 to lower values
around 0.1. For the subsequent iterations the markov chain appears to be bounded by 0.5. This is in contrast to our
results for X(0) = 0.4 which remains bounded by 0.6 for the �rst 5000 iterations. Therefore, we might conclude that
X(0) = 0.4 reaches the equilibrium distribution faster than for X(0) = 0.9, which provides some indication about the

7

Figure 5: Autocorrelation Sequence for the amended Metropolis Hastings algorithm for τ = 5 and τ = 15 using
X(0) = 0.9 and n = 1000

relative importance of our starting value X(0). This also provides a visualisation of our burn-in time. Consequently, we
might wish to discard the �rst few iterations for the Metropolis Hasting algorithm after which the algorithm produces
a purely random Markov chain.

Figure 6: Metropolis Hasting paths for n = 5000 and X(0) = 0.9 and X(0) = 0.4 respectively

We might also like to compare the results from the �rst 1000 iterations with that obtained by the subsequent
1000 iterations to illustrate the importance of our starting value X(0). In Figure 7 we can see that for X(0) = 0.9
the histogram of our random variables takes relatively extreme values, with some as large as 0.9 and the rest heavily
concentrated around 0.05. By comparison the subsequent 1000 iterations is more similar to our actual density as
plotted in Figure 1. Interestingly for X(0) = 0.4, as in Figure 8 we see that the �rst 1000 and the following 1000
iterations both loosely resemble that of our density. We might consider this somewhat unsurprising given the path of
our algorithm appears to settle down quicker for X(0) = 0.4 than for X(0) = 0.9.

Finally, if we compare the results from the Metropolis Hastings with that obtained when using the Ratio of Uniforms
algorithm with n = 2000, as in Figure 9, we can see the histogram produced is already beginning to resemble that of
our distribution. Therefore, we may take the view that the Metropolis Hastings algorithm has a potential weakness
when compared the the Ratio of Uniforms algorithm.

4 Conclusion

In conclusion we have produced several di�erent methods to sample from some speci�ed density. We have explored the
technique of Monte Carlo integration, exploring di�erent methods with the objective of variance reduction. We then
explored Monte Carlo Markov Chain techniques, in particular the Metropolis Hastings sampler which has the desired
distribution in its equilibrium distribution. We have shown that the Metropolis Hastings algorithm requires a burn-in
time and by comparing the autocorrelation function with that obtained when using the Ratio of Uniforms algorithm
have shown one of its potential weaknesses, as well as demonstrating the importance of which value we choose for
X(0).

8

Figure 7: Comparing the �rst 1000 samples compared to the subsequent 1000 from our density f(x) for X(0) = 0.9

Figure 8: Comparing the �rst 1000 samples compared to the subsequent 1000 from our density f(x) for X(0) = 0.4

Figure 9: Sampling from our density f(x) using the Ratio of Uniforms algorithm and n = 200

9

5 Appendix

The below code was implemented in R.

5.1 Plotting our density

y <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

plot(y)

#Plot of our density f(x) up to proportionality

5.2 Numerical approximation

y <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

integrate(y,0,1)

5.3 Finding a and c

y_sqrt <- function(x) { ((1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2))^(1/2) }

optimize(f=y_sqrt,interval=c(0,1),maximum=TRUE)

#Finding the value of a

y_xsqrt <- function(x) { x*((1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2))^(1/2) }

optimize(f=y_xsqrt,interval=c(0,1),maximum=TRUE)

#Finding the value of c

5.4 Ratio of Uniforms

"RatioofUniforms" <- function(n) {

u <- runif(n, min=0, max=1)

value = mean((1/(u*(1-u)))*exp(-0.5*(3+log(u/(1-u)))^2))

#Approximate the value of the integral h(x)

a = 5.861968

b = 0

c = 0.2865048

probaccept = (0.5*value)/(a*(c-b))

#The acceptence probability is given by the above formula

factor <- 1/probaccept

ngen = ceiling(n*factor)

#Generating ngen numbers at a time for rejection

cat("Generating", format(ngen),"at a time for rejecting","\n")

count <- 0

rt <- vector("numeric")

total <- 0

while(count < n)

{

u1 = runif(ngen)

u2 = runif(ngen)

U = a*u1

V = b + (c-b)*u2

condition <- (1/((V/U)*(1-(V/U)))*exp(-0.5*(3+log((V/U)/(1-(V/U))))^2))^0.5

rt <- c(rt, V[U<condition]/U[U<condition])

count <- length(rt)

total <- total + ngen

}

cat("acceptance probability =", format(count/total),"\n")

cat("Theoretical acceptance probability =", format(probaccept),"\n")

rt<-na.omit(rt)

#Removing the values in rt which give NA

hist(rt[1:n],100)

#Plots the first n values from our vector rt as a histogram

plot(rt[1:n]�"l")

#Plots the path of the first n values from our vector rt

acf(rt[1:n])

#Plots the autocorrelation function for the first n values from our vector rt

print(rt[1:n])

}

10

5.5 Finding M for g(x) Uniform

f1 <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

optimize(f=y,interval=c(0,1),maximum=TRUE)

#Finding the value of M

5.6 Uniform Rejection Algorithm

"RejectionUniform" <- function(n) {

M = 34.36266

probaccept = 1/M

factor <- 1/probaccept

ngen = ceiling(n*factor)

#Generating ngen at a time for rejection

cat("Generating", format(ngen),"at a time for rejection","\n")

count <- 0

rt <- vector("numeric")

total <- 0

while(count < n)

{

u1 <- runif(ngen, min=0, max=1)

u2 <- runif(ngen, min=0, max=1)

condition <- (1/M)*(1/(u1*(1-u1)))*exp(-0.5*(3+log(u1/(1-u1)))^2)

rt <- c(rt, u1[u2<condition])

count <- length(rt)

total <- total + ngen

}

cat("acceptance probability =", format(count/total),"\n")

cat("Theoretical acceptance probability =", format(probaccept),"\n")

hist(rt,100)

print(rt)

}

5.7 Finding M for g(x) Beta

f1_f2 <- function(x)

{

(((1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2))/(((x^(1.5-1))*((1-x)^(4-1)))/beta(1.5,4)))

}

optimize(f=f1_f2,interval=c(0,1),maximum=TRUE)

#Finding the value of M

5.8 Beta Rejection Algorithm

"RejectionBeta" <- function(n) {

M = 34.36266

probaccept = 1/M

factor <- 1/probaccept

ngen = ceiling(n*factor)

cat("Generating", format(ngen),"at a time for rejecting","\n")

count <- 0

rt <- vector("numeric")

total <- 0

while(count < n)

{

u1 <- runif(ngen, min=0, max=1)

u2 <- runif(ngen, min=0, max=1)

condition <- (1/M)*(1/(u1*(1-u1)))*exp(-0.5*(3+log(u1/(1-u1)))^2)

rt <- c(rt, u1[u2<condition])

count <- length(rt)

total <- total + ngen

}

11

cat("acceptance probability =", format(count/total),"\n")

cat("Theoretical acceptance probability =", format(probaccept),"\n")

hist(rt,100)

print(rt)

}

5.9 Direct φ− f method

"montecarlo"<-function(n){

u <- runif(n, min=0, max=1)

value = mean((1/(u*(1-u)))*exp(-0.5*(3+log(u/(1-u)))^2))

print(value)

}

5.10 Anithetic

"montecarloA"<-function(n){

u <- runif(n, min=0, max=1)

v <- 1-u

value = mean(0.5*((1/(v*(1-v)))*exp(-0.5*(3+log(v/(1-v)))^2) +

(1/(u*(1-u)))*exp(-0.5*(3+log(u/(1-u)))^2)))

print(value)

}

5.11 Strati�ed Sampling

"montecarloS"<-function(n)

{

u1 <- runif(n, min=0, max=0.005)

u2 <- runif(n, min=0.005, max=0.01)

u3 <- runif(n, min=0.01, max=0.015)

u4 <- runif(n, min=0.015, max=0.02)

u5 <- runif(n, min=0.02, max=0.03)

u6 <- runif(n, min=0.03, max=0.05)

u7 <- runif(n, min=0.05, max=0.1)

u8 <- runif(n, min=0.1, max=0.2)

u9 <- runif(n, min=0.2, max=0.3)

u10 <- runif(n, min=0.3, max=0.4)

u11 <- runif(n, min=0.4, max=1)

value1 = (0.005)*mean((1/(u1*(1-u1)))*exp(-0.5*(3+log(u1/(1-u1)))^2))

value2 = (0.005)*mean((1/(u2*(1-u2)))*exp(-0.5*(3+log(u2/(1-u2)))^2))

value3 = (0.005)*mean((1/(u3*(1-u3)))*exp(-0.5*(3+log(u3/(1-u3)))^2))

value4 = (0.005)*mean((1/(u4*(1-u4)))*exp(-0.5*(3+log(u4/(1-u4)))^2))

value5 = (0.01)*mean((1/(u5*(1-u5)))*exp(-0.5*(3+log(u5/(1-u5)))^2))

value6 = (0.02)*mean((1/(u6*(1-u6)))*exp(-0.5*(3+log(u6/(1-u6)))^2))

value7 = (0.05)*mean((1/(u7*(1-u7)))*exp(-0.5*(3+log(u7/(1-u7)))^2))

value8 = (0.1)*mean((1/(u8*(1-u8)))*exp(-0.5*(3+log(u8/(1-u8)))^2))

value9 = (0.1)*mean((1/(u9*(1-u9)))*exp(-0.5*(3+log(u9/(1-u9)))^2))

value10 = (0.1)*mean((1/(u10*(1-u10)))*exp(-0.5*(3+log(u10/(1-u10)))^2))

value11 = (0.6)*mean((1/(u11*(1-u11)))*exp(-0.5*(3+log(u11/(1-u11)))^2))

value = value1+value2+value3+value4+value5+value6+value7+value8+value9+value10+value11

print(value)

}

5.12 Finding c for Hit and Miss

y <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

optimize(f=y,interval=c(0,1),maximum=TRUE)

12

5.13 Hit & Miss Algorithm

"montecarloHM"<-function(n) {

u <- runif(n, min=0, max=1)

v <- runif(n, min=0, max=34.36266)

w <- (1/(u*(1-u)))*exp(-0.5*(3+log(u/(1-u)))^2)

value <- 0

count <- 0

c=34.36266

while(count < n)

{

value <- sum(ifelse(v<w, 1, 0))

count <- count + 1

}

Answer = c*(1/n)*value

print(Answer)

}

5.14 Faster Hit & Miss Algorithm

We are able to improve the above algorithm, with the following, more e�cient code.

"montecarloHMF"<-function(n){

u <- runif(n, min=0, max=1)

v <- runif(n, min=0, max=34.36266)

indicator <- vector("numeric")

c=34.36266

value = 0

for(i in 1:n)

{

if(v[i]<=(1/(u[i]*(1-u[i])))*exp(-0.5*(3+log(u[i]/(1-u[i])))^2))

indicator[i]=1

else

indicator[i]=0

value = indicator[i] + value

}

Answer = c*(1/n)*value

print(Answer)

}

5.15 Importance Sampling

"montecarloIS"<-function(n){

betadis <- function(x) {((x^(1.5-1))*((1-x)^(22-1)))/beta(1.5,22)}

u <- rbeta(n,1.5,22)

value = mean((1/(u*(1-u)))*exp(-0.5*(3+log(u/(1-u)))^2)/betadis(u))

print(value)

}

5.16 Plotting the Beta(1.5,22) distribution

betadis <- function(x) { ((x^(1.5-1))*((1-x)^(22-1)))/beta(1.5,22) }

plot(betadis)

5.17 Metropolis Hastings Uniform distribution

mhastU<-function (n,k,x0) {

vec <- vector("numeric", n)

alpha <- vector("numeric",n)

density <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

x <- x0

vec[1] <- x

for (i in 2:n) {

13

q <- runif(1, -k, k)

y <- x + q

if(dunif(y,0,1)==0) aprob <- 0 else aprob <- min(1,density(y)/density(x))

u <- runif(1)

if (u < aprob) x <- y

vec[i] <- x

alpha[i] <- aprob

}

hist(vec,100)

print(vec)

plot(vec�"l")

mean(alpha)

}

5.18 Metropolis Hastings Normal distribution

mhastN<-function (n,sigma,x0) {

vec <- vector("numeric", n)

alpha <- vector("numeric",n)

density <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

x <- x0

vec[1] <- x

for (i in 2:n) {

q <- rnorm(1, 0, sigma)

y <- x + q

if(dunif(y,0,1)==0) aprob <- 0 else aprob <- min(1,density(y)/density(x))

u <- runif(1)

if (u < aprob) x <- y

vec[i] <- x

alpha[i] <- aprob

}

hist(vec,100)

print(vec)

plot(vec�"l")

mean(alpha)

acf(vec)

#Plots the autocorrelation function

}

5.19 Comparing the �rst 1000 samples to the subsequent 1000 samples

mhastN2<-function (sigma,x0) {

n=2000

vec <- vector("numeric", n)

alpha <- vector("numeric",n)

density <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

x <- x0

vec[1] <- x

for (i in 2:n) {

q <- rnorm(1, 0, sigma)

y <- x + q

if(dunif(y,0,1)==0) aprob <- 0 else aprob <- min(1,density(y)/density(x))

u <- runif(1)

if (u < aprob) x <- y

vec[i] <- x

alpha[i] <- aprob

}

hist(vec[1:1000],100)

#Plots the first 1000 variables as a histogram

hist(vec[1001:2000],100)

#Plots the second 1000 variables as a histogram

hist(vec,100)

14

print(vec)

plot(vec�"l")

mean(alpha)

acf(vec)

}

5.20 Ammended Metropolis Hastings Algorithm

mhastlag<-function (n,x0,lag) {

vec <- vector("numeric", n)

alpha <- vector("numeric",n)

density <- function(x) { (1/(x*(1-x)))*exp(-0.5*(3+log(x/(1-x)))^2) }

x <- x0

vec[1] <- x

for (i in 2:n)

{

q <- rnorm(1, 0, 0.24)

y <- x + q

if(dunif(y,0,1)==0) aprob <- 0 else aprob <- min(1, density(y)/density(x))

u <- runif(1)

if (u < aprob) x <- y

vec[i] <- x

alpha[i] <- aprob

}

v <- vector("numeric")

n1 = floor(n/lag)-1

for (j in 1:n1) { v[j]<-vec[j*lag+1] }

#Producing our new vector v

hist(v,100)

plot(v�"l")

acf(vec)

#Plots our original autocorrelation function

acf(v)

#Plots our new autocorrelation function

}

15

